This article was downloaded by: On: *21 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

To cite this Article Hack, W.(1985) 'Detection methods for atoms and radicals in the gas phase', International Reviews in Physical Chemistry, 4: 2, 165 - 200

To link to this Article: DOI: 10.1080/01442358509353358 URL: http://dx.doi.org/10.1080/01442358509353358

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doese should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Detection methods for atoms and radicals in the gas phase

by W. HACK

Max-Planck-Institut für Strömungsforschung, Böttingerstr. 4–8, D-3400 Göttingen, F.R. Germany

This report lists atoms and free radicals in the gas phase which are of interest for environmental and flame chemistry and have been detected directly. The detection methods which have been used are discussed with respect to their range of application, specificity and sensitivity. In table 1, detection methods for the five atoms of group IV (C, Si, Ge, Sn, Pb) and about 60 radicals containing at least one atom of group IV are summarized

(CH, CD, CF, CCl, CBr, CN, CS, CSe, CH₂, CD₂, CHF, CDF, CHCl, CHBr, CF₂, CCl₂, CBr₂, CFCl, CFBr, CH₃, CD₃, CF₃, CH₂F, CH₂Cl, CH₂Br, CHF₂, CHCl₂, CHBr₂, HCO, FCO, CH₃O, CD₃O, CH₂OH, CH₃S, NCO, CH₄N, CH₃O₂, CF₃O₂;

C₂, C₂N, C₂H, C₂O, C₂HO, C₂H₃, C₂F₃, C₂H₅O, C₂H₅O, C₂H₄OH, CH₃CO, CD₃CO, C₂H₃O, C₂H₅O₂, CH₃COO₂, C₂H₄N, C₂H₆N, C₃; Si, SiF, SiF₂, SiO, SiC, Si₂; C₂ C₂C₂O, C₂E, C₂C₂C₃ S₂, S₂E, S₂O, S₂E, Ph. Ph.C. Ph.C. Ph.C. Ph.C.

Ge, GeC, GeO, GeF, GeF₂, GeCl₂, Sn, SnF, SnO, SnF₂, Pb, PbF, PbF₂, PbO, PbS).

In table 2 detection methods for about 25 other atoms and 60 radicals are listed:

(H, D, O, O_2 , OH, OD, H O_2 , D O_2 , F, Cl, Br, I, FO, ClO, BrO, IO, F O_2 , Cl O_2 , Li, Na, K, Rb, Cs, N, N₃, NH, ND, NF, NCl, NBr, NH₂, ND₂, NHD, NHF, NF₂, NCl₂, N₂H₃, NO, NO₂, NO₃, HNO, DNO, P, PH, PD, PF, PCl, PH₂, PD₂, PF₂, PO, As, AsO, AsS, Sb, Bi, S, S₂, SH, SD, SF, SF₂, SO, HSO, DSO, SN, Se, Te, Se₂, SeH, SeD, SeF, SeO, SeS, SeN, TeH, TeO, BH, BH₂, BO, BN, BO₂, Cd, Hg, UF₅).

The tables also cite some recent kinetic applications of the various methods.

1. Introduction

The detection of free radicals in the gas phase was first achieved by Paneth and Hofeditz in 1929 [1]. They showed that the reflecting surface produced by the thermal dissociation of Pb $(CH_3)_4$ or Zn $(CH_3)_2$ disappeared when the metal surfaces were exposed to the dissociation products from Pb $(CH_3)_4$ at some distance from the heated area; in the case of a Zn-film, Zn $(CH_3)_2$ was formed. In addition the authors were able to conclude from the experiments with their flow system that the free radicals produced had a short lifetime.

Since those early days, detection methods have improved substantially. Sensitive and specific detection methods were needed to study combustion processes and other reactive systems in detail. Most of the important elementary reactions in these systems involve radicals. Their production and depletion rates are high and their concentrations are small, so sensitive detection methods are required. Also products of elementary reactions do not have a Boltzmann distribution with respect to the surrounding temperature. The initial product state populations are not only of interest in producing inversion in chemical reactions but also for the detailed description of the reacting systems. Therefore detection methods are not only required for the atom or radical but also for its quantum state. For this reason, for some radicals, detection methods are required for various states.

Since there are so many methods known for detecting free radicals, a review seems worth while. There are several reviews containing information about detection methods for atom reactions [2–4] in general or for reactions of atoms in electronically excited states[5]. The kinetics of various atoms (H [6, 7], O [8, 9], F [10, 11], Cl [11], N [12] and others) and radicals (OH [13–16], HO₂ [17], CH₃ [18] and others) are reviewed in the literature; those papers contain detailed descriptions for detecting at least the atom or radical under consideration. Some systems in which atom and radical reactions are of significant importance (e.g. atmospheric chemistry [19], combustion and flame chemistry [20, 21] or gas phase kinetics in general [22–25]) are discussed in the cited reviews. Also there are excellent descriptions of the various detection methods (e.g. ESR [26], LMR [27], Mass spectrometry [28], LASER, LIF, LRA [29]). Clyne has described methods to detect radicals and to measure their concentrations in flow systems in several articles [30].

2. Classification of detection methods

A species can be detected quantitatively if a signal which is specific for that species and a function of its concentration is obtained. An electrical signal is nearly always preferred since its further treatment is easiest.

A general tabulation of small radicals together with the methods applied in the past to determine their concentrations in the gas phase should be useful at the moment since in the last few years remarkable progress has been made in experimental techniques, due to new and improved laser light sources and due to the development of better molecular beam sampling systems in mass spectrometry. In particular the experimental advances in laser methods which allow observation of the system without disturbance are still going on with respect to time and spatial resolution; the possibilities seem to be far from finished.

The various methods used can be arranged in a systematic way by dividing them into two groups: (i) only the quantum state of the radical is changed, and (ii) the chemical nature of the radical is changed, during the detection process. In the following we list the techniques with respect to this classification.

2.1. Radical detection by changing its quantum state

The radical can be supplied with the energy to change its quantum state by energy transfer or by absorption of photons. The first process is useful for detection if subsequent emission occurs. The emission (E) which can be observed with spectral resolution is often used in high-temperature systems (flames, shock tubes) and to observe reactions in which the radicals of interest appear in excited states (Chemiluminescence (ChL)). Connected to the second process, the absorption of light in a wide spectral range from the vacuum ultraviolet (VUV) to the microwave (MW) region, provides a whole variety of detection methods.

The absorption methods (A) depend on the weakening of the light beam passing through the absorbing probe, which is described for sufficiently dilute probes by the Lambert-Beer law:

$$I(v) = I_0(v) \exp\left(-\sigma_v l\right) \tag{1}$$

I(v), $I_0(v)$ = light intensity after the distance l and at l=0 respectively l = absorption length σ_v = absorption coefficient.

The absorption coefficient is a feature of the radical and characteristic for the two quantum states involved in the transition. The values of σ_v determine whether an atom or radical can be detected by absorption at a particular concentration, with a particular experimental arrangement. The sensitivity will be discussed later.

A change in light by absorption can be converted into an electrical signal without severe problems. The absorption can be produced either with white light or with a resonance line (RA). The resonance either already exists from the choice of the light source (resonance lamp or monochromator) or is obtained by applying a magnetic (Zeeman-spectroscopy) or electric (Stark-spectroscopy) field. A technique based on the tuning of the absorption line of the paramagnetic radical by the Zeeman effect is laser magnetic resonance (LMR); the anologue for the Stark effect is laser electric resonance (LER). Absorption between the components of one state produced by Zeeman splitting is observed in electron spin resonance (ESR). For strong absorbers single-pass absorptions may be sufficient, but for weakly absorbing species multipass absorption devices or intracavity absorption (ICA) may be required.

As in the case of energy transfer mentioned above, the absorption can be detected indirectly by emission (fluorescence or phosphorescence). The observed fluorescence intensity is given by:

$$I_{\rm F} = \chi \phi I_{\rm abs} \tag{2}$$

 $\chi = \text{geometric} \text{ factor}$ $\phi = \text{fluorescence quantum yield}$ $I_{abs} = absorbed light$

in the absence of radiation trapping. The obvious necessity for appearance emission is that $\phi > 0$; i.e. the excited state must have a finite lifetime. If the emission is obtained from the state initially populated, it is often called resonance fluorescence (RF), and laser-induced fluorescence (LIF) if laser light is used. Light absorption and thus emission ($I_{abs} > 0$) is only obtained if the transition is allowed. With high intensity laser beams, two-photon processes can be induced. This technique known as 'two-photon absorption laser induced fluorescence' (TALIF) has among others the advantage that scattered laser light has a frequency which differs from that of the emission. Since the fluorescence quantum yield as given in equation (2) is reduced by quenching the fluorescence, techniques are normally applied in low-pressure systems (p = 1-10 mbar).

Quenching problems can be avoided by using laser-induced saturation fluorescence (LISF). If the power density in the irradiated volume is sufficiently high $(10^5-10^8 \text{ W/cm}^2 \text{ cm}^{-1})$, the optical transition is saturated or nearly saturated. The fluorescence intensity becomes independent of the laser intensity and the quenching rate [52]. This method has been used to measure concentrations of radicals like CH and CN in flames at atmospheric pressure [53–55].

The quenching problem can also be circumvented by using scattering instead of fluorescence. The Raman effect and even the resonance-Raman effect are generally not sensitive enough to measure radicals and are thus used mainly for stable molecules. However intense laser light sources allow non-linear Raman spectroscopy to be used; a comparison of spontaneous Raman scattering (RS), inverse Raman scattering (IRS) and coherent-anti-Stokes Raman scattering (CARS) for flame studies is discussed in [62]. The CARS method will be described in more detail here since in practice it seems to be, among the Raman methods, the most important technique for studying radical concentrations. A probe which is collinearly irradiated by two laser beams with frequencies ω_1 (pump radiation) and ω_2 (Stokes radiation, $\omega_1 > \omega_2$), and which has a Raman active frequency $\omega_v(\omega_v = \omega_1 - \omega_2)$ will emit a higher frequency

$$\omega_3(\omega_3 = \omega_1 + \omega_v = 2\omega_1 - \omega_2)$$

which results from a coherent interaction between the molecular vibration at ω_{ν} and the radiation at ω_1 and ω_2 . The new emission (CARS) can be observed collinear with the pump beams in the forward direction.

CARS has been used to analyse flames [56] and the method is particularly useful for analysing rotational and vibrational temperatures [57]. The only radical detected so far by resonance-CARS is $C_2 (X^1 \Sigma_g^+)$ [58, 59].

2.2. Radical detection by changing its chemical nature

A radical can be converted into another species for which detection is easier and/or more sensitive by dissociation (e.g. $HO_2 \rightarrow OH + O$) or by chemical reaction (e.g. $HO_2 + NO \rightarrow OH + NO_2$). In both examples OH is detected rather than the HO_2 radical. Techniques of this kind are normally not included in table 1 or 2. If an excited species is produced in such a chemical reaction the emission can be used to observe the radical.

Another technique which is connected with a change in the chemical nature of a radical is the measurement of the heat released to a catalytic probe by radical recombination. This method is often used for atoms.

By far the most important process which is covered by this heading is the formation of ions from radicals which are then detected in a mass spectrometer (MS) or with other devices. Ionization by electron impact can be used as a primary process in mass spectrometry. The ionization cross-section may be significantly different for various particles and some are not ionized without fragmentation. This fragmentation is a problem in mass spectrometry as discussed in detail later (§ 3.2). Specific mass spectrometric detection techniques for radicals with focusing fields using their paramagnetic or polar properties have been developed [64, 65]. Photoionization (PI) and multiphoton ionization (MPI) provide other ways to avoid the fragmentation problem (§ 3.2).

Some other techniques using ions, which are not necessarily connected to a mass spectrometer, are surface ionization (SI) in a Langmuir–Taylor detector, the laseroptogalvanic absorption (LOG) which is related to ion formation by laser radiation, and photoelectron spectroscopy (PES) which is often used to obtain information about the quantum states of the radical rather than about its concentration.

In addition to these techniques, there are indirect detection methods such as freezing the gas-phase radicals into low-temperature matrices. This report deals with direct methods only. In the following sections the qualities of the various procedures will be described.

3. Comparison of techniques

The comparison of radical detection techniques is not an easy task. The analytic method applied in a specific experiment will depend on the experimental arrangement used but nevertheless we are not going to deal with experimental methods used for

kinetic studies. The most important criteria of the kinetic system studied is whether stationary (e.g. in flow systems, flames, photolytic or pyrolytic systems) or nonstationary (e.g. in flash photolysis, shock tubes) radical concentrations are to be observed. Several of the methods given below are less useful for the latter application. For a specific radical the options are summarized in tables 1 and 2.

The comparison is done with respect to three characteristics of a method; whether it is *universal*, *specific*, *sensitive*.

These characteristics seem to be of special importance and the following description will be divided to highlight these features. It is easily accepted that it is a great advantage if the detection system is universal. The method should be specific for the species and if possible for the quantum state. A high sensitivity is of special importance for kinetic applications as pointed out above. Very often reliable information about a kinetic system can be obtained only if it is possible to vary the concentrations over a wide range. Another problem, not yet mentioned, is that of determining absolute concentrations and since a calibration may be needed, another good quality of a detection method is that an absolute calibration can be made easily. One might argue that the characteristics given here are not independent of each other but nevertheless they give helpful guidelines in discussing and comparing the various methods.

3.1. Universality

In principle all particles are detectable by mass spectrometry. This method can be regarded as universal provided that it is possible to get the representative sample into the ion source. This method is still universal if photoionization is used instead of ionization by electron bombardment. The surface ionization (SI) is mainly used for alkali and alkaline earth atoms and is not universal at all.

Optical detection methods in general require a more specific interaction between photon and radical or atom than does photoionization. Two quantum states are needed which are connected by a photon; moreover, if emission is expected instead of absorption a sufficiently high fluorescence quantum yield is required. In particular, for absorption the sensitivity will be sufficient only if a narrow-band light source with suitable frequency is available but, as mentioned above, the absorption frequency of the radical can be shifted by the Stark or Zeeman effect. Since light sources are available for the whole spectral range including the microwave region one would expect to find one, or even several, appropriate light sources; nevertheless the experimental arrangements required for a specific problem and the sensitivity can show a great variety.

The universality is reduced if special absorption arrangements are needed like LRA or ICA. The Zeeman absorption techniques ESR, LMR have been used for many interesting radicals. In particular, the number of radicals and even atoms detected by LMR is still growing rapidly. As already mentioned the absorption-emission techniques require that the fluorescence quantum yield is high enough; this restriction narrows the number of radicals for which these techniques are available.

In contrast to these methods which can be called universal or semi-universal, techniques like chemiluminescence and the conversion of radicals to species, as mentioned above, will always be restricted to special chemical systems. The CARStechnique which until now has been used for only a very few radicals may soon become applicable for more radicals.

The question of how universal a detection method is, can be answered by looking at tables 1 and 2. In these tables methods for atoms and small radicals are summarized. From these tables (which do not claim to be complete) one can see that mass

spectrometry (MS) appears to be nearly universal; this would be even more evident if the larger hydrocarbon radicals (C_n ; n > 2) had been included. Looking at other methods, such as laser induced fluorescence (LIF), one has to keep in mind that for two radicals to be detected with LIF, two different lasers and thus two different experimental arrangements may have to be used. This means that the method may seem to be much more universal than a specific experimental arrangement really is.

3.2. Specificity

For any analytical method it is necessary that the signal obtained is clearly correlated with the observed species. This seems to be a problem in mass spectrometry, since electron bombardment is unselective and produces fragments of all the particles initially present in the sample. This problem is severe for radicals since the same ions may be obtained by electron impact from the precursor molecules in the sample. Reduction of the electron energy to avoid fragmentation of the precursor also reduces the sensitivity. An even more complicated situation is obtained where highly excited radicals are produced in a reactive system. A solution to these problems can be seen in the photoionization technique (specific photoionization by one, two, three or multiphoton ionization) [31–35]. This method is specific in two ways and is thus often called two-dimensional mass spectrometry. The focusing field technique is another attempt to avoid the fragmentation problem. Surface ionization in a kind of Langmuir–Taylor arrangement is unspecific. This is also true for the catalytic probe (CP) technique.

Compared to MS, high specificity can be obtained easily by optical methods.

Specific detection by optical methods (e.g. A, RA, LRA, RF, LIF, LISF, TALIF, LMR, ESR) is possible only if the spectroscopy of all particles present in the probe is known and adequate monochromatic light sources are available. The absorption or fluorescence is then not only specific for the absorbing particle but also for the population of its quantum states. Thus there is the possibility of detecting the product energy distribution in chemical reactions. Zare *et al.* [36] used laser induced fluorescence to probe the population of quantum states in BaO produced in the reaction $Ba+O_2 \rightarrow BaO+O$. This technique has been applied to various other molecules and radicals. The rotational and vibrational population of OH in the reaction $H + NO_2$ was studied using the well-known transition $A^2\Sigma^+ - X^2\Pi$ [37]. The population distribution was used not only for concentration measurements but also to determine temperatures [38]. Chemiluminescence observed with sufficiently high spectral resolution is also highly specific.

Measurements of emission intensities in the infrared region (IR-chemiluminescence) have been used to determine rotational and vibrational energy distributions in the product of chemical reactions [39, 40]. The application of Raman and resonance Raman scattering as well coherent-anti-Stokes Raman scattering (CARS) appear to be of increasing importance for measuring product state distributions.

3.3. Sensitivity

As mentioned above, the sensitivity is the most important feature of a detection method. In this section we will give some estimates and comparisons of the sensitivity of the various methods. There is no doubt that the sensitivity resulting for one method depends on the characteristics of the particular species and so the figures given in this section can only give a rough idea of the sensitivity of a method. Detailed data about the sensitivity for some atoms and radicals are included in the tables. In the mass spectrometer the pressure in the volume where the detection is performed (ion source) is in the order of 10^{-5} to 10^{-6} mbar. The reaction system which is to be analysed by mass spectrometry is often at a pressure of 10 to 1000 mbar. The ratio of the number densities in the reaction and detection volume are in the order of 10^{-6} to 10^{-9} . Nevertheless, the mass spectrometer is a sensitive method since the ionization and the detection of the ions formed is very sensitive. For example, in 1 mbar of He, less than 10^{-6} mbar CH₄ can be observed quantitatively. For a CH₃-radical, the detection limit is about 10^{-5} mbar in typical laboratory conditions if the CH₃ is produced in an excess of CH₄ in the reaction F + CH₄. If a CH₃-radical source is used which contains only a minor CH₄ mole fraction, e.g. CH₂N₂+H, the mass spectrometric detection limit is more than an order of magnitude higher. This high sensitivity is due to high efficiency for the detection of ions. The same argument explains the extremely high sensitivity obtained by Langmuir–Taylor detectors, which are therefore successfully used in molecular beam experiments. Photoionization is also a technique which shows high sensitivity for the same reason.

For the optogalvanic detection method the authors claim they obtain a substantially greater sensitivity for O-atoms in an atmospheric pressure flame than Raman or two-photon laser induced fluorescence techniques [66]. The detection sensitivity is substantially better than 10^{17} atoms/cm³ given for the spontaneous Raman scattering in the literature cited [68].

For optical methods, and particularly for those based on absorption, numerous experimental arrangements are in use. As can be seen from equation (1), a narrow-band monochromatic light source is needed to obtain high sensitivity; moreover the absorption length can be increased by using multipass arrangements (White cell). An absorber placed inside a laser cavity (intra-cavity absorption) changes the quality factor of the resonator if the laser frequency and the absorbing frequency match. Thus the laser intensity is sensitive to the absorbing probe; the enhancement in sensitivity compared to a single absorption can be several orders of magnitude. The relative change of the laser output has its maximum near the lasing threshold (limited by spontaneous emission in the direction of the laser axis) whereas the absolute change of the laser intensity is higher above the threshold. If linearity between the signal and the radical concentration and a low-noise laser is required, it is preferable to measure significantly off the laser threshold. The intra-cavity arrangement is used in LMR (laser magnetic resonance). The resonance between the laser line (CO, CO_2 or FIR-laser) and the radical absorption line is obtained by applying a magnetic field [41] (Zeeman effect) which is modulated to improve the sensitivity (comparable to NMR-spectrometers).

The sensitivities obtained by LMR are remarkably high (e.g. $[OH] \ge 10^8$, $[HO_2] \ge 10^9$ radicals/cm³ at 1 mbar inert gas pressure [42, 43]). The spatial resolution is limited by the laser cross-section (about 1 cm for CO₂-laser, 3 cm for FIR-laser). Laser electric resonance (LER), where the resonance is obtained by an electrical field, is similar to LMR.

The intra-cavity absorption in multimode dye lasers has been known for more than ten years [44] but only a very few radicals have been detected by this method [45]. The sensitivity obtained can be compared with results attained with other multipass absorption arrangements.

Intra-cavity absorption is also used in electron spin resonance spectrometers, where the change in quality of a microwave cavity due to absorption of a paramagnetic probe is observed. The sensitivity obtained is about three orders of magnitude smaller than for LMR-spectrometers. ([OH] $\ge 8 \times 10^9$ radical/cm³ at 1 mbar inert gas pressure

[26]). The spatial resolution is determined by the active volume of the cavity (about 3 cm^3). To improve the spatial resolution, special probing systems have been used which will not be discussed in detail here.

Another sensitive absorption technique, of increasing importance for chemical kinetic studies, is the Fourier-transform infrared absorption technique [46–50]. This method, which has mainly been used for high-resolution spectroscopy, will be used to study radical reactions in detail.

Extremely high sensitivities are reached by absorption-emission techniques. The resonance fluorescence (RF) and laser-induced fluorescence (LIF) are methods with remarkably good spatial resolution. For example, for OH and NH₂-radicals concentrations of 10^6 to 10^8 radicals/cm³ at a total pressure of 1–10 mbar can be measured quantitatively in a cross-section of several mm diameter. The rapid development in laser techniques has changed the detection limits drastically; some years ago the sensitivity for Na-atoms was 10^2 atoms/cm³ [51]. This limit is now at least two orders of magnitude lower. Information about the dynamics of the electronic excited state are also obtained by LIF since one can determine the collision-free lifetime as well as the quenching rates for the excited states involved. In systems where the nature and concentrations of quenchers is not known (e.g. flames), quenching turns out to be a severe problem since absolute calibrations become very complicated.

Laser-induced saturation fluorescence (LISF) is a very sensitive method, in particular in systems at high pressures. For OH-radicals, for example, in a premixed laminar flame in the pressure range $20 \le p/\text{mbar} \le 1011$ a detection limit to $10^{13} - 10^{12}$ radicals/cm³ was obtained [67].

The two-photon laser-induced fluorescence technique (TALIF) applied to O-atoms at a pressure of 13 mbar resulted in a sensitivity which was claimed to be considerably more sensitive than 10^{15} - 10^{16} atoms/cm³ [69].

The scattering techniques which—like the above mentioned LISF-techniques have the advantage of working at higher pressure are not very sensitive compared to LIF (at low pressure). The sensitivity for O-atoms obtained by spontaneous Raman scattering in a hydrogen/oxygen flame and by coherent-anti-Stokes–Raman scattering in the same system is given as $[O] \simeq 10^{17}$ atoms/cm³ [70]. The CARS sensitivity is limited by the non-resonant background and was insufficient for detecting other shortlived radicals. However, gas-phase CARS spectra of OH, NH₂ and CH₃ have been observed recently [63]. The sensitivity with available laser light sources is given 10 p.p.b. CO in air at standard conditions. A detailed description of the CARS method is given in [60, 61].

In particular, this last section shows that it is complicated to compare techniques. Even if the discussion is restricted to one property at a time, there are still aspects such as the different experimental conditions under which the method can be used.

This compilation indicates that the sensitivity of the various methods can differ significantly. The aims for the applications can vary drastically so that other properties, like long time stability, reproducibility, reliability or the possibility of calibration, become more important for the choice of technique.

4. Prospect

The development of analytical techniques is certainly not at an end; on the contrary, improvements in this field are very rapid, particularly since the laser technique is developing rapidly. More highly sensitive methods will be developed with good spatial and extreme time resolution, which will lead to new kinetic experiments in real time.

Acknowledgment

The author is greatly indebted to Professor H. Gg. Wagner for his generous support and stimulating interest. An abbreviated table has been published by W. Hack and H. Gg. Wagner, Z. anal. Chem., **316**, 124 (1983).

Appendix

Compilation of various atoms and radicals and its detection methods

Detection methods for atoms and radicals are summarized in tables 1 and 2. The abbreviations used are explained at the end of table 2.

Table 1.	Atoms of the fourth group of the periodic table and radicals containing at
	least one atom of this group.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Atom, radical	Method	Explanations	References
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C(^{3}P_{J})$	RA	$({}^{3}P_{J}^{0}-{}^{3}P_{J}) \lambda = 165.7 \text{ or } 156.1 \text{ nm}$	[131, 132]
$ \begin{array}{cccc} \text{LIF} & (P^{\text{D}-1}S_0) \ \lambda_{\text{P}} = 247.8 \ \text{nm} & [134, 148] \\ \text{LMR} & (^3P_{0,1}) \ \text{FIR} \ (\text{CO}_2) & [261] \\ \text{MS} & (\text{electron impact ionization}) \ (C^+) & [3, 247] \\ \text{CH, CD} \ (X^{2}\Pi_{3/2}) & \text{A} & (C^{2}\Pi-X^{2}\Pi) \ 314 \ \text{nm} \ \lambda (0, 0) = 315.66 \ \text{nm} & [136] \\ \lambda (1, 1) = 314.41 \ \text{nm} & [137, 139] \\ dy (N_2-1 \text{aser} & [140] \\ \text{LIF} & (A^{2}\Delta-X^{2}\Pi) \ 0, 0 \ \text{band} = 431 \ \text{nm} & [137, 139] \\ dy (N_2-1 \text{aser} & [140] \\ \text{laser intensity} \ 10^{5}-10^{6} \ \text{W/cm}^{2} \ \text{cm}^{-1} & [140] \\ \text{laser intensity} \ 10^{5}-10^{6} \ \text{W/cm}^{2} \ \text{cm}^{-1} & [140] \\ \text{Harmon} & (J'-J'') = 1, J'=7/2, 5/2, 3/2 & [138] \\ \text{CH}_{3} \ \text{OH} \ (J'-J'') = 1, J'=7/2, 5/2, 3/2 & [138] \\ \text{CH}_{3} \ \text{OH} \ (J'-J'') = 1, J'=7/2, 5/2, 3/2 & [138] \\ \text{CH}_{3} \ \text{CH} \ (J'-J'') = 1, J'=7/2, 5/2, 3/2 & [138] \\ \text{CH}_{3} \ \text{CH} \ (J'-J'') = 1, J'=7/2, 5/2, 3/2 & [138] \\ \text{CH}_{3} \ \text{CH} \ (J'-J'') = 1, J'=7/2, 5/2, 3/2 & [138] \\ \text{CH}_{3} \ \text{CH} \ (J'-J'') = 1, J'=7/2, 5/2, 3/2 & [138] \\ \text{CH}_{3} \ \text{CH} \ (J'-J'') = 1, J'=7/2, 5/2, 3/2 & [138] \\ \text{CH}_{3} \ \text{CH} \ (J'-J'') = 1, J'=7/2, 5/2, 3/2 & [138] \\ \text{CH}_{3} \ \text{CH} \ (J'-J'') = 1, J'=7/2, 5/2, 3/2 & [138] \\ \text{CH}_{3} \ \text{CH} \ (J'-J'') = 1, J'=7/2, 5/2, 3/2 & [138] \\ \text{CH}_{3} \ \text{CH} \ (J'-J'') = 1, J'=7/2, 5/2, 3/2 & [138] \\ \text{CH}_{3} \ \text{CH} \ (J'-J'') = 1, J'=7/2, 5/2, 3/2 & [138] \\ \text{CH} \ (J'-J'') = 1, J'=1/2, J/2 \ (J'-J'') = 1, J'=1/2, J'=1/2, J/2 \ (J'-J'') = 1, J'=1/2, J'=1/2, J/2 \ (J'-J'') = 1, J'=1/2, J'=1/2, J'=1/2, J'=1$	$({}^{1}D_{2}), ({}^{1}S_{0})$	RA	$({}^{1}P_{1}^{0}-{}^{1}S_{0}) \lambda = 247.9 \mathrm{nm}$	[133]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		LIF	$({}^{1}P^{0}-{}^{1}S_{0}) \lambda_{\rm F} = 247.8 \rm nm$	[134, 148]
$\begin{array}{ccccc} MS & (electron impact ionization) (C^{+}) & [3, 247] \\ CH, CD (X {}^{2}\Pi_{3/2}) & A & (C {}^{2}\Pi - X {}^{2}\Pi) 314 nm \lambda (0, 0) = 315.66 nm & [136] \\ \lambda (1, 1) = 314.41 nm & [137, 139] \\ dy (N_2 {}^{-1}aser & [140] \\ laser intensity 10 {}^{5}-10^{6} W/cm^{2} cm^{-1} & [140] \\ laser intensity 10 {}^{5}-10^{6} W/cm^{2} cm^{-1} & [140] \\ laser intensity 10 {}^{5}-10^{6} W/cm^{2} cm^{-1} & [135] \\ LMR & (J^{-}J')^{-} = 1, J' = 7/2, 5/2, 3/2 & [138] \\ CH_{3} OH (1807 \mum) - CH_{2} CHCl (567.9 \mum) \\ FIR/CO_{2}{}^{-laser} & MS & (electron impact ionization) (CH^{+}, CD^{+}) & [4] \\ CF (X {}^{2}\Pi_{1/2, 3/2}) & A - UV & (A {}^{2}\Sigma + X^{2}\Pi) \lambda (0, 0) = 233.1 nm & [152] \\ A - FIR DL & X {}^{2}\Pi\Omega = 3/2, 1/2 (J + 1 \leftarrow J) 17/2 \leqslant J \leqslant 23/2, 180, 153] \\ \lambda = 330 \mu m \\ E & (A {}^{2}\Sigma + X {}^{2}\Pi) \lambda (0, 0) = 233.1 nm & [179] \\ LMR & (\Omega = 3/2, 2, J = 9) = -11/2, & [151] \\ CH_{2} CHBr (635.4 \mu m) FIR/CO_{2}{}^{-laser} & [5, 150] \\ MS & (electron impact ionization) (CF^{+}) & [3, 4, 186] \\ CCl (X {}^{2}\Pi_{1/2, 3/2}) & A - UV & (A {}^{2}\Sigma + X {}^{2}\Pi) \lambda (0, 0) = 277.7 nm & [155] \\ MS & (electron impact ionization) (CF^{+}) & [3, 4, 186] \\ CCl (X {}^{2}\Pi_{1/2, 3/2}) & A - UV & (A {}^{2}\Delta - X {}^{2}\Pi) 293 \geqslant \lambda/nm \geqslant 271 & [181] \\ MS & (electron impact ionization) (CF^{+}) & [3, 4] \\ CBr (X {}^{2}\Pi_{1/2, 3/2}) & A - UV & (A {}^{2}\Sigma + X {}^{2}\Pi) \lambda (0, 0) = 278 nm & [155] \\ MS & (electron impact ionization) (CF^{+}) & [3, 4] \\ CBr (X {}^{2}\Pi_{1/2, 3/2}) & A - UV & (A {}^{3}Z + -X {}^{2}\Sigma +) (P, 0, 0) 383.4 nm (0 \leqslant V'' \leqslant 7) & [157, 158] \\ LIF & (A {}^{2}\Sigma + X {}^{2}\Sigma +) (P, 0, 0) 383.4 nm (0 \leqslant V'' \leqslant 7) & [157, 158] \\ LIF & (A {}^{2}\Sigma + X {}^{2}\Sigma +) (C (A) P + N (KS) + M \rightarrow CN (B {}^{2}\Sigma +) + M & [156, 161] \\ MS & (electron impact ionization) (CN^{+}) & [3, 4] \\ \end{array}$		LMR	$({}^{3}P_{0,1})$ FIR (CO ₂)	[261]
$\begin{array}{ccccc} \mathrm{CH, CD} \left(X\ ^{2}\Pi_{3/2}\right) & \mathrm{A} & (C\ ^{2}\Pi-X\ ^{2}\Pi)\ ^{314} \mathrm{nm}\ ^{\lambda}\left(0,0\right)= 315\ ^{66} \mathrm{nm} & ^{\lambda}\left(1,1\right)= 314\ ^{41} \mathrm{nm} & ^{\lambda}\left(1,1\right)= 314\ ^{41} \mathrm{nm} & & & & & & & & & & & & & & & & & & &$		MS	(electron impact ionization) (C ⁺)	[3,247]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CH, CD ($X^2 \Pi_{3/2}$)	Α	$(C^2\Pi - X^2\Pi)$ 314 nm λ (0, 0) = 315.66 nm λ (1, 1) = 314.41 nm	[136]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		LIF	$(A^2\Delta - X^2\Pi) 0,0$ band = 431 nm dye/N ₂ -laser	[137, 139]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		LISF	$(A^{2}\Delta - X^{2}\Pi)$	[140]
$\begin{array}{ccccc} L & (A & \Delta A & 1i) & 4 & -7i/2 & 5i/2 & 4init & 0 & 2i/2 & 4init & 0 & 5i/2 & 2i/2 & 1init & 0 & 5i/2 & 2i/2 & 1init & 0 & 5i/2 & 1init & 1i$		Б	$(4^{2}\Lambda V^{2}\Pi) 420 nm O /C H flome$	F1257
$\begin{array}{c} \text{LMR} & (3^{-}J)^{-}1, J^{-}1/2, J/2, J/2 \\ & \text{CH}_{3}\text{OH}_{1}(1807\mu\text{m})\text{-CH}_{2}\text{ CHCl}(5679\mu\text{m}) \\ & \text{FIR/CO}_{2}\text{-laser} \\ \text{MS} & (\text{electron impact ionization})(\text{CH}^{+}, \text{CD}^{+}) & [4] \\ \text{CF}(X^{2}\Pi_{1/2, 3/2}) & \text{A}-\text{UV} & (A^{2}\Sigma^{+}-X^{2}\Pi)\lambda(1,0)=224\cdot3\text{nm} & [152] \\ & \text{A}-\text{FIR}\text{ DL} & X^{2}\Pi\Omega=3/2, 1/2(J+1\leftarrow J)17/2\leqslant J\leqslant 23/2, & [180, 153] \\ \lambda=330\mu\text{m} & [179] \\ \text{LMR} & (\Omega=3/2, J=9/2-11/2, & [151] \\ & \text{CH}_{2}\text{CHBr}(635\cdot4\mu\text{m})\text{ FIR/CO}_{2}\text{-laser} \\ & \text{ESR} & (J=3/2\text{ and } J=5/2, \Omega=3/2(X\text{-band}) & [5, 150] \\ & \text{MS} & (\text{electron impact ionization})(\text{CF}^{+}) & [3, 4, 186] \\ \\ \text{CCl}(X^{2}\Pi_{1/2, 3/2}) & \text{A}-\text{UV} & (^{2}\Delta_{3/2}^{-2}\Pi_{1/2})(Q_{1}, 0, 0)\lambda=277\cdot7\text{nm} & [155] \\ & \text{(strong absorption band)} \\ \\ \text{LIF} & (A^{2}\Delta-X^{2}\Pi)\lambda(0, 0)=278\text{nm} & [154] \\ & \text{dye}/N_{2}\text{-laser} (\text{doubled}) \\ \\ \text{E} & (^{2}\Delta)(A^{2}\Delta-X^{2}\Pi)293\geqslant\lambda/\text{nm}\geqslant 271 & [181] \\ & \text{MS} & (\text{electron impact ionization})(\text{CCI}^{+}) & [3, 4] \\ \\ \text{CBr}(X^{2}\Pi_{1/2, 3/2}) & \text{A}-\text{UV} & (^{2}\Delta_{3/2}^{-2}\Pi_{1/2})(Q_{1}, 0, 0)\lambda=301\cdot45\text{nm} & [149] \\ & (\text{strong absorption band}) \\ \\ \text{MS} & (\text{electron impact ionization})(\text{CBr}^{+}) & [3, 4] \\ \\ \text{CN}(X^{2}\Sigma^{+}) & \text{A} & (B^{2}\Sigma^{+}-X^{2}\Sigma^{+})(P, 0, 0)388\cdot34\text{nm}(0\leqslant V''\leqslant7) & [157, 158] \\ \\ \text{LIF} & (A^{2}\Pi-X^{2}\Sigma^{+})(0, 0), (0, 1)570\leqslant\lambda/\text{nm}\leqslant610 & [159, 160] \\ & dye/N_{2}\text{-laser} \\ \\ \text{LISF} & (B^{2}\Sigma^{+}-X^{2}\Sigma^{+}) & [3, 41] \\ \end{array}$			(I' I'') = 1 I' = 7/2 5/2 2/2	[133]
$\begin{array}{cccc} MS & (\text{electron impact ionization}) (CH^+, CD^+) & [4] \\ CF (X^2\Pi_{1/2,3/2}) & A-UV & (A^2\Sigma^+ - X^2\Pi)\lambda(1,0) = 224\cdot3\mathrm{nm} & [152] \\ A-FIR DL & X^2\Pi\Omega = 3/2,1/2(J+1\leftarrow J)17/2\leqslant J\leqslant 23/2, & [180,153] \\ \lambda = 330\mu\mathrm{m} & [179] \\ LMR & (\Omega^{2}3/2,J=9/2-11/2, & [151] \\ CH_2CHBr(635\cdot4\mu\mathrm{m})FIR/CO_2\text{-laser} & [151] \\ CH_2CHBr(635\cdot4\mu\mathrm{m})FIR/CO_2\text{-laser} & [151] \\ CC1(X^2\Pi_{1/2,3/2}) & A-UV & (^2\Delta_{3/2}^{-2}\Pi_{1/2})(Q_1,0,0)\lambda = 277\cdot7\mathrm{nm} & [155] \\ (strong absorption band) & [1Ff & (A^2\Delta-X^2\Pi)\lambda(0,0) = 278\mathrm{nm} & [154] \\ dye/N_2\text{-laser}(doubled) & [154] \\ MS & (electron impact ionization)(CC1^+) & [3,4] & [181] \\ CBr(X^2\Pi_{1/2,3/2}) & A-UV & (^2\Delta_{3/2}^{-2}\Pi_{1/2})(Q_1,0,0)\lambda = 301\cdot45\mathrm{nm} & [149] \\ (strong absorption band) & [1Ff & (A^2\Pi-X^2\Sigma^+)(P,0,0)388\cdot34\mathrm{nm}(0\leqslant V''\leqslant7) & [157,158] \\ LIF & (A^2\Pi-X^2\Sigma^+)(P,0,0)388\cdot34\mathrm{nm}(0\leqslant V''\leqslant7) & [157,158] \\ LIF & (A^2\Pi-X^2\Sigma^+)(P,0,0)(0,1)570\leqslant\lambda/\mathrm{nm}\leqslant610 & [159,160] \\ dye/N_2\text{-laser} & (B^2\Sigma^+-X^2\Sigma^+) & [331] \\ E & (^2\Sigma^+), C^3P+N^4S)HM\toCN(B^2\Sigma^+)H & [156,161] \\ MS & (electron impact ionization)(CN^+) & [3,4] & [35] & [34] & [35] & [35] & [35] & [35] & [34] & [35] & [34] & [35] & [34] & [3$		LIVIK	(J - J) = 1, J = 1/2, J/2, S/2 CH ₃ OH (180·7 μ m)–CH ₂ CHCl (567·9 μ m) FIR/CO ₂ -laser	[136]
$\begin{array}{cccc} \mathrm{CF}\;(X\;^2\Pi_{1/2,3/2}) & \operatorname{A-UV} & (A\;^2\Sigma^+ - X\;^2\Pi)\;\lambda\;(1,0) = 224\cdot3\;\mathrm{nm} & [152] \\ \mathrm{A-FIR}\;\mathrm{DL} & X\;^2\Pi\Omega = 3/2,1/2\;(J+1 \leftarrow J)\;17/2 \leqslant J \leqslant 23/2, & [180,153] \\ \lambda = 330\;\mu\mathrm{m} & [179] \\ \mathrm{LMR} & (\Omega = 3/2,J = 9/2 - 11/2, & [151] \\ \mathrm{CH}_2 (\mathrm{LHR})\;(635\cdot4\;\mu\mathrm{m})\;\mathrm{FIR}/\mathrm{CO}_2\text{-laser} & [58R] & (J = 3/2\;\mathrm{and}\;J = 5/2,\Omega = 3/2\;(X\text{-band}) & [5,150] \\ \mathrm{MS} & (electron\;impact\;ionization)\;(\mathrm{CF}^+) & [3,4,186] \\ \mathrm{CCI}(X\;^2\Pi_{1/2,3/2}) & \operatorname{A-UV} & (^2\Delta_{3/2} - ^2\Pi_{1/2})\;(Q_1,0,0)\;\lambda = 277\cdot7\;\mathrm{nm} & [155] \\ & (strong\;absorption\;band) \\ \mathrm{LIF} & (A\;^2\Delta - X\;^2\Pi)\;\lambda\;(0,0) = 278\;\mathrm{nm} & [154] \\ & dy(N_2\text{-laser}\;(doubled) & [24](M^2 - X^2\Pi)\;293 \geqslant \lambda/\mathrm{nm} \geqslant 2711 & [181] \\ \mathrm{MS} & (electron\;impact\;ionization)\;(\mathrm{CCI}^+) & [3,4] \\ \mathrm{CBr}\;(X\;^2\Pi_{1/2,3/2}) & \operatorname{A-UV} & (^2\Delta_{3/2} - ^2\Pi_{1/2})\;(Q_1,0,0)\;\lambda = 301\cdot45\;\mathrm{nm} & [149] \\ & (strong\;absorption\;band) & [149] \\ \mathrm{CBr}\;(X\;^2\Pi_{1/2,3/2}) & \operatorname{A-UV} & (^2\Delta_{3/2} - ^2\Pi_{1/2})\;(Q_1,0,0)\;\lambda = 301\cdot45\;\mathrm{nm} & [149] \\ & (\mathrm{Strong}\;absorption\;band) & [149] \\ \mathrm{CBr}\;(X\;^2\Pi_{1/2,3/2}) & \operatorname{A-UV} & (^2\Delta_{3/2} - ^2\Pi_{1/2})\;(Q_1,0,0)\;\lambda = 301\cdot45\;\mathrm{nm} & [149] \\ & (strong\;absorption\;band) & [157,158] \\ \mathrm{LIF} & (A\;^2\Pi - X\;^2\Sigma^+)\;(0,0),\;(0,1)\;570\leqslant\lambda/\mathrm{nm}\leqslant610 & [159,160] \\ & dy(N_2\text{-laser} & [25^+ - X\;^2\Sigma^+)\;(0,0),\;(0,1)\;570\leqslant\lambda/\mathrm{nm}\leqslant610 & [159,160] \\ & dy(N_2\text{-laser} & [25^+ - X\;^2\Sigma^+)\;(331] \\ \mathrm{E} & (^2\Sigma^+),\; C\;(^3P) + \mathrm{N}\;(^4S) + \mathrm{M}\to\mathrm{CN}\;(B\;^2\Sigma^+) + \mathrm{M}\;[156,161] \\ & \mathrm{MS} & (electron\;impact\;ionization)\;(\mathrm{CN}^+) & [3,4] & [34,1] \\ \end{array}$		MS	(electron impact ionization) (CH ⁺ , CD ⁺)	[4]
$\begin{array}{cccc} A = A - FIR DL & X^{2}\Pi\Omega = 3/2, 1/2 (J + 1 \leftarrow J) 17/2 \leqslant J \leqslant 23/2, & [180, 153] \\ \lambda = 330 \mu m & [179] \\ LMR & (\Omega = 3/2, J = 9/2 - 11/2, & [151] \\ CH_{2}CHBr (635 + \mu m) FIR/CO_{2} - laser \\ ESR & (J = 3/2 \text{ and } J = 5/2, \Omega = 3/2 (X - band) & [5, 150] \\ MS & (electron impact ionization) (CF^{+}) & [3, 4, 186] \\ CCI (X^{2}\Pi_{1/2, 3/2}) & A - UV & (^{2}\Delta_{3/2} - ^{2}\Pi_{1/2}) (Q_{1}, 0, 0) \lambda = 277 \cdot 7 \text{ nm} & [155] \\ (strong absorption band) & [154] \\ dye/N_{2} - laser (doubled) & [154] \\ MS & (electron impact ionization) (CC1^{+}) & [3, 4] \\ CBr (X^{2}\Pi_{1/2, 3/2}) & A - UV & (^{2}\Delta_{3/2} - ^{2}\Pi_{1/2}) (Q_{1}, 0, 0) \lambda = 301 \cdot 45 \text{ nm} & [149] \\ (strong absorption band) & [157, 158] \\ LIF & (A^{2}\Pi - X^{2}\Sigma^{+}) (P, 0, 0) 388 \cdot 34 \text{ nm} (0 \leqslant V'' \leqslant 7) & [157, 158] \\ LIF & (A^{2}\Pi - X^{2}\Sigma^{+}) (0, 0), (0, 1) 570 \leqslant \lambda/nm \leqslant 610 & [159, 160] \\ dye/N_{2} - laser & [LISF & (B^{2}\Sigma^{+} - X^{2}\Sigma^{+}) & [331] \\ E & (^{2}\Sigma^{+}), C (^{3}P) + N (^{4}S) + M \rightarrow CN (B^{2}\Sigma^{+}) + M & [156, 161] \\ MS & (electron impact ionization) (CN^{+}) & [3, 4] \\ \end{array}$	$CF(X^2\Pi_{1/2,2/2})$	A-UV	$(A^{2}\Sigma^{+} - X^{2}\Pi) \lambda (1, 0) = 224.3 \text{ nm}$	F152]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(1/2, 3/2)	A-FIR DL	$X^2 \Pi \Omega = 3/2, 1/2$ (<i>J</i> + 1 ← <i>J</i>) 17/2 ≤ <i>J</i> ≤ 23/2, λ = 330 µm	[180, 153]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Е	$(A^{2}\Sigma^{+}-X^{2}\Pi) \lambda (0,0) = 233.1 \text{ nm}$	[179]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		LMR	$(\Omega = 3/2, J = 9/2 - 11/2, CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2$	[151]
$\begin{array}{cccc} MS & (e^{ S /2} \operatorname{CR} (Y \otimes P) = \operatorname{Ard} (Y \otimes P)$		ESR	$(J=3/2 \text{ and } J=5/2, \Omega=3/2 \text{ (X-band)}$	E5 1507
$\begin{array}{cccc} \text{CCl}\left(X\ ^{2}\Pi_{1/2,\ 3/2}\right) & \text{A-UV} & \left(^{2}\Delta_{3/2}\ ^{-2}\Pi_{1/2}\right)\left(Q_{1},0,0\right)\lambda=277\cdot7\text{ nm} & \left[155\right] \\ & \text{(strong absorption band)} \\ & \text{LIF} & \left(A\ ^{2}\Delta-X\ ^{2}\Pi\right)\lambda\left(0,0\right)=278\text{ nm} & \left[154\right] \\ & \text{dye/N}_{2}\text{-laser}\left(\text{doubled}\right) & \\ & \text{E} & \left(^{2}\Delta\right)\left(A\ ^{2}\Delta-X\ ^{2}\Pi\right)293\geqslant\lambda/\text{nm}\geqslant271 & \left[181\right] \\ & \text{MS} & (\text{electron impact ionization})\left(\text{CC1}^{+}\right) & \left[3,4\right] \\ & \text{CBr}\left(X\ ^{2}\Pi_{1/2,\ 3/2}\right) & \text{A-UV} & \left(^{2}\Delta_{3/2}\ ^{-2}\Pi_{1/2}\right)\left(Q_{1},0,0\right)\lambda=301\cdot45\text{ nm} & \left[149\right] \\ & & (\text{strong absorption band}) \\ & \text{MS} & (\text{electron impact ionization})\left(\text{CBr}^{+}\right) & \left[3,4\right] \\ & \text{CN}\left(X\ ^{2}\Sigma^{+}\right) & \text{A} & \left(B\ ^{2}\Sigma^{+}-X\ ^{2}\Sigma^{+}\right)\left(P,0,0\right)\ 388\cdot34\text{ nm}\left(0\leqslant V''\leqslant7\right) & \left[157,158\right] \\ & \text{LIF} & \left(A\ ^{2}\Pi-X\ ^{2}\Sigma^{+}\right)\left(0,0\right),\left(0,1\right)\ 570\leqslant\lambda/\text{nm}\leqslant610 & \left[159,160\right] \\ & & dye/N_{2}\text{-laser} & \\ & \text{LISF} & \left(B\ ^{2}\Sigma^{+}-X\ ^{2}\Sigma^{+}\right) & \left[331\right] \\ & \text{E} & \left(^{2}\Sigma^{+}\right),\ \text{C}\ (^{3}P)+\text{N}\ (^{4}S)+\text{M}\rightarrow\text{CN}\ (B\ ^{2}\Sigma^{+})+\text{M} & \left[156,161\right] \\ & \text{MS} & (\text{electron impact ionization})\left(\text{CN}^{+}\right) & \left[3,4\right] \end{array}$		MS	(electron impact ionization) (CE^+)	[3, 190]
$\begin{array}{cccc} L(x^{-} \Pi_{1/2,3/2}) & L(x^{-} \Pi_{1/2}) (\underline{\psi}_{1,9,0}) & L(x^{-} \Pi_{1/2}) (\underline{\psi}_{1,9,0}) & L(x^{-} \Pi_{1/2}) & L(x^{-}$	$CCl(X^2\Pi_{1/2-2/2})$	A-UV	$(^{2}\Lambda_{2})_{2}^{-2}\Pi_{1}$, (0, 0, 0) $\lambda = 277.7$ nm	[155]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2, 3/2/	LIF	(strong absorption band) ($A^2\Delta - X^2\Pi$) λ (0, 0) = 278 nm	[154]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	dye/N_2 -laser (doubled)	
$\begin{array}{cccc} MS & (electron impact ionization) (CCl^{+}) & [3,4] \\ CBr (X {}^{2}\Pi_{1/2,3/2}) & A-UV & ({}^{2}\Delta_{3/2} - {}^{2}\Pi_{1/2}) (Q_{1},0,0) \lambda = 301 \cdot 45 \mathrm{nm} & [149] \\ & (strong absorption band) \\ MS & (electron impact ionization) (CBr^{+}) & [3,4] \\ CN (X {}^{2}\Sigma^{+}) & A & (B {}^{2}\Sigma^{+} - X {}^{2}\Sigma^{+}) (P,0,0) 388 \cdot 34 \mathrm{nm} (0 \leqslant V'' \leqslant 7) & [157,158] \\ LIF & (A {}^{2}\Pi - X {}^{2}\Sigma^{+}) (0,0), (0,1) 570 \leqslant \lambda/\mathrm{nm} \leqslant 610 & [159,160] \\ & dye/N_{2}\text{-laser} & & \\ LISF & (B {}^{2}\Sigma^{+} - X {}^{2}\Sigma^{+}) & [331] \\ E & ({}^{2}\Sigma^{+}), C ({}^{3}P) + N ({}^{4}S) + M \rightarrow CN (B {}^{2}\Sigma^{+}) + M & [156,161] \\ MS & (electron impact ionization) (CN^{+}) & [3,4] \end{array}$		E	$(^{2}\Delta)(A^{2}\Delta - X^{2}\Pi) 293 \ge \lambda/nm \ge 271$	
$\begin{array}{cccc} \text{CBr} (X\ {}^{2}\Pi_{1/2,\ 3/2}) & \text{A}-\text{UV} & (\ {}^{2}\Delta_{3/2}-{}^{2}\Pi_{1/2}) (Q_{1},0,0)\ \lambda=301\cdot45\ \text{nm} & [149] \\ & (\text{strong absorption band}) & \\ \text{MS} & (\text{electron impact ionization}) (\text{CBr}^{+}) & [3,4] \\ \text{CN} (X\ {}^{2}\Sigma^{+}) & \text{A} & (B\ {}^{2}\Sigma^{+}-X\ {}^{2}\Sigma^{+}) (P,0,0)\ 388\cdot34\ \text{nm} (0\leqslant V''\leqslant 7) & [157,158] \\ & \text{LIF} & (A\ {}^{2}\Pi-X\ {}^{2}\Sigma^{+}) (0,0), (0,1)\ 570\leqslant\lambda/\text{nm}\leqslant610 & [159,160] \\ & & dye/N_{2}\text{-laser} & \\ & \text{LISF} & (B\ {}^{2}\Sigma^{+}-X\ {}^{2}\Sigma^{+}) & [331] \\ & \text{E} & (\ {}^{2}\Sigma^{+}), \ \text{C}\ {}^{3}P)+\text{N}\ {}^{4}S)+\text{M}\rightarrow\text{CN}\ (B\ {}^{2}\Sigma^{+})+\text{M} & [156,161] \\ & \text{MS} & (\text{electron impact ionization})\ (\text{CN}^{+}) & [3,4] \end{array}$		MS	(electron impact ionization) (CCI ⁺)	[3,4]
$\begin{array}{cccc} MS & (electron impact ionization) (CBr^{+}) & [3,4] \\ CN (X^{2}\Sigma^{+}) & A & (B^{2}\Sigma^{+}-X^{2}\Sigma^{+}) (P,0,0) 388\cdot34 nm (0 \leqslant V'' \leqslant 7) & [157,158] \\ LIF & (A^{2}\Pi-X^{2}\Sigma^{+}) (0,0), (0,1) 570 \leqslant \lambda/nm \leqslant 610 & [159,160] \\ & dye/N_{2}-laser \\ LISF & (B^{2}\Sigma^{+}-X^{2}\Sigma^{+}) & [331] \\ E & (^{2}\Sigma^{+}), C (^{3}P) + N (^{4}S) + M \rightarrow CN (B^{2}\Sigma^{+}) + M & [156,161] \\ MS & (electron impact ionization) (CN^{+}) & [3,4] \end{array}$	CBr $(X^2 \Pi_{1/2, 3/2})$	A–UV	$(^{2}\Delta_{3/2}-^{2}\Pi_{1/2})$ (Q ₁ , 0, 0) $\lambda = 301.45$ nm (strong absorption band)	[149]
$\begin{array}{cccc} \text{CN} (X\ ^2\Sigma^+) & \text{A} & (B\ ^2\Sigma^+ - X\ ^2\Sigma^+) (P, 0, 0)\ 388\cdot 34\ \text{nm}\ (0 \leqslant V'' \leqslant 7) & [157, 158] \\ \text{LIF} & (A\ ^2\Pi - X\ ^2\Sigma^+) (0, 0), (0, 1)\ 570 \leqslant \lambda/\text{nm} \leqslant 610 & [159, 160] \\ & & & & & \\ \text{dye}/N_2\text{-laser} & & & \\ \text{LISF} & (B\ ^2\Sigma^+ - X\ ^2\Sigma^+) & & [331] \\ \text{E} & (^2\Sigma^+), \ C\ (^3P) + \text{N}\ (^4S) + \text{M} \rightarrow \text{CN}\ (B\ ^2\Sigma^+) + \text{M} & [156, 161] \\ \text{MS} & (\text{electron impact ionization})\ (\text{CN}^+) & & [3, 41] \end{array}$		MS	(electron impact ionization) (CBr ⁺)	[3,4]
LIF $(A^2\Pi - X^2\Sigma^+)(0,0), (0,1) 570 \le \lambda/nm \le 610$ [159, 160] dye/N_2 -laser LISF $(B^2\Sigma^+ - X^2\Sigma^+)$ [331] E $(^2\Sigma^+), C(^3P) + N(^4S) + M \rightarrow CN(B^2\Sigma^+) + M$ [156, 161] MS (electron impact ionization) (CN ⁺) [3, 4]	$CN(X^2\Sigma^+)$	А	$(B^{2}\Sigma^{+}-X^{2}\Sigma^{+})$ (P, 0, 0) 388:34 nm (0 $\leq V'' \leq 7$)	F157, 1587
LISF $(B^{2}\Sigma^{+}-X^{2}\Sigma^{+})$ [331] E $(2\Sigma^{+}), C(3P) + N(4S) + M \rightarrow CN(B^{2}\Sigma^{+}) + M$ [156, 161] MS (electron impact ionization) (CN ⁺) [3, 4]		LIF	$(A^{2}\Pi - X^{2}\Sigma^{+})(0, 0), (0, 1)$ 570 $\leq \lambda/nm \leq 610$ dve/Nlaser	[159, 160]
E $(^{2}\Sigma^{+}), C (^{3}P) + N (^{4}S) + M \rightarrow CN (B^{2}\Sigma^{+}) + M$ [156, 161] MS (electron impact ionization) (CN ⁺) [3.4]		LISF	$(B^2\Sigma^+ - X^2\Sigma^+)$	F3317
MS (electron impact ionization) (CN^+) [3.4]		E	$(^{2}\Sigma^{+}), C (^{3}P) + N (^{4}S) + M \rightarrow CN (B^{2}\Sigma^{+}) + M$	L156, 1617
		MS	(electron impact ionization) (CN^+)	[3.4]

Atom, radical	Method	Explanations	References
$\overline{\mathrm{CS}(X^{1}\Sigma^{+})}$	A–UV LIF	$(A^{1}\Pi - X^{1}\Sigma^{+}) (Q, 0, 0) \lambda = 257.675 \text{ nm}$ $(A^{1}\Pi - X^{1}\Sigma^{+}) (0, 0) \lambda = 275.5 \text{ nm}$ den $(M^{1}\Pi - X^{1}\Sigma^{+}) (0, 0) \lambda = 275.5 \text{ nm}$	[163] [162, 165, 166]
	Ε	(UV) $(A^{1}\Pi - X^{1}\Sigma^{+})$ CS $A^{1}\Pi$ from discharge	[164]
	MS	(electron impact ionization) (CS^+)	[3,4]
CSe $(D^{1}\Pi)$	Ε	$(D^{1}\Pi - X^{1}\Sigma^{+}) 275 \leq \lambda/nm \leq 305$ CSe $(D^{1}\Pi$ from photodissociation of CSe ₂)	[332] [315]
$\operatorname{CH}_2, \operatorname{CD}_2(\widetilde{X}^{3}B_1)$	A–UV LMR	$(\tilde{B}-\tilde{X}) \lambda = 141.5 \text{ nm}$ $(\tilde{X}^{3}B_{1}) \text{ CH}_{3}\text{OH} (163.0 \mu\text{m}) \text{ FIR/CO}_{2}\text{-laser}$ sensitivity: $\text{FCH} (\tilde{Y}^{3}B_{1}) \ge 1.7 \times 10^{-15} \text{ mel/cm}^{3}$	[171] [169, 170]
	MS	$[CH_2(X B_1)] \ge 1.7 \times 10^{-10} \text{ mol/cm}^2$ (electron impact ionization) (CH ₂ ⁺)	[396] [4, 256]
CH_2 , CD_2 (\tilde{a}^1A_1)	A–VIS–UV LIF	$\begin{array}{l} (\tilde{b}^{1}B_{1}-\tilde{a}^{1}A_{1}) \ 500 \leqslant \lambda/\mathrm{nm} \leqslant 900 \\ (\tilde{b}^{1}B_{1}-\tilde{a}^{1}A_{1}) \ 563 \leqslant \lambda/\mathrm{nm} \leqslant 568 \\ 544 \leqslant \lambda/\mathrm{nm} \leqslant 549, \ \mathrm{dye}/\mathrm{N}_{2}\text{-laser} \end{array}$	[168] [167, 172]
CHF, CDF $(\tilde{X}^{1}A_{1})$	A–VIS LIF ChL	$(\tilde{A}^{1}A'' - \tilde{X}^{1}A') (0, 0, 0) - (0, 0, 0) \lambda = 579 \text{ nm}$ $(\tilde{A}^{1}A'' - X^{1}A') 574 \leq \lambda/\text{nm} \leq 582, \text{ dye/N}_2\text{-laser}$ $F + CH_4, (CD_4) (\tilde{A}^{1}A''); O + C_2HF_3(\tilde{A}^{1}A'')$	[175] [173, 176, 177] [178]
CHCl, CHBr ($\tilde{X}^{1}A'$)	A-VIS	$\tilde{A}^{1}A'' - \tilde{X}^{1}A' 820 \ge \lambda/\mathrm{nm} \ge 550$	[337]
$\operatorname{CF}_2(\widetilde{X}^1A_1)$	A–UV	${}^{(1}B_1 - {}^{1}A_1), 300 \ge \lambda/\text{nm} \ge 220 \text{ at } 1600 \text{ K}, \lambda = 249 \text{ nm at } 300 \text{ K}$	[152, 182, 189]
	AIR-DL	$({}^{R}Q$ branch of $v_{1}\tilde{X}^{1}A_{1}$; multipass absorption (White-cell)	[185]
	RF	$(\tilde{A}^{1}B_{1}(0,4,0)-\tilde{X}^{1}A_{1}(0,0,0)) \lambda = 253.7 \text{ nm}$	[187]
	LIF	Hg-lamp $(\tilde{A}^{1}B_{1}-\tilde{X}^{1}A_{1}) \lambda (0) = 268.74 \text{ nm}$	[174]
	E MS	(³ B_1) O+C ₂ F ₄ (\tilde{a} ³ B_1) λ_E =560 nm (electron impact ionization) (CF ₂ ⁺)	[188] [3, 4, 186]
CCl_2 , $\operatorname{CBr}_2(\tilde{X}^1A_1)$	LIF MS	(Cl) $(\tilde{A}^{1}B_{1}-\tilde{X}^{1}A_{1}) \lambda/\text{nm} = 515; 437, \text{dye-laser}$ (electron impact ionization) (CCl ₂ ⁺ , CBr ₂ ⁺)	[154, 183] [3, 4]
$\operatorname{CFCl}(\widetilde{X}^{1}A')$	LIF	$(\tilde{A}^{1}A'' - \tilde{X}^{1}A') \lambda/nm = 379.4; 384.8, dye-laser$	[183, 190]
CFBr $(\tilde{X}^{1}A')$	LIF	$(\tilde{A}^{1}A'' - \tilde{X}^{1}A') 400 \leq \lambda/nm \leq 460$ dye-laser	[184]
$\mathrm{CH}_{3},\mathrm{CD}_{3}\;(\tilde{X}^{2}A_{2}'')$	A–UV	$(\tilde{B}^2 A'_1 - \tilde{X}^2 A''_2) \lambda = 216 \text{ nm}$ $\varepsilon_{\text{max}} (CD_3) = 2.0 \times 10^3 \text{ l/mol cm}$ $\varepsilon_{\text{max}} (CL) = 1.8 \times 10^3 \text{ l/mol cm}$ at 1400 K	[141, 142, 171, 392] [143]
	E (IR)	v_{2} and v_{3} (antisym. stretching mode) at 3.1 μ m, CH, from Hq(CH.), photolysis at 248, 193 nm	[146]
	MPI-MS	$(\hat{B}^{2}A'_{1}-\hat{X}^{2}A''_{2})$ (0,0) (266 nm Nd; VAG 4 harm +215 nm)	[144]
	MS	(electron impact ionization) (CH_3^+ , CD_3^+); hbotoionization Lyman α Kr (MgF ₂ -window)	[3, 4, 145]
	CARS	photoronization Zyman a, iti (ingi 2 "mao")	[395]
$\operatorname{CF}_3(\widetilde{X}^2A_1)$	A–UV	$200 \le \lambda/\text{nm} \le 230; T = 1300 \text{ K}, \lambda_{\text{max}} = 218 \text{ nm}$ $\varepsilon_{218} = 57 \text{ l/mol cm}$	[191]
	MPI–MS MS	$215 \leq \lambda/nm \leq 490$ three-photon process electron impact ionization, photoionization (CF ⁺ ₃)	[192] [3, 4, 186, 259]
$\operatorname{CH}_2 X (F, \operatorname{Cl}, \operatorname{Br}) (\tilde{X})$	LMR	$CH_2F-N_2H_4$ (301·3 µm), CH_2CHCl (567·9 µm) HCOOH (393·6 µm) 513 µm) $EIR/CO_{-2}laser$	[250]
	MS	(electron impact ionization) (CH_2F^+ , CH_2Cl^+ , CH_2Br^+)	[3,4]

Atom, radical	Method	Explanations	References
$CHX_2 (F, Cl, Br (\tilde{X}))$	MS	(electron impact ionization) (CHF ⁺ ₂ , CHCl ⁺ ₂ , CHBr ⁺ ₂)	[3,4]
HCO $(\tilde{X}^2 A')$	A-VIS-UV	$(\tilde{A}^{2}A'' - \tilde{X}^{2}A') \ 460 \le \lambda/nm \le 860, (\tilde{B}^{2}A' - \tilde{X}^{2}A') \ 210 \le \lambda/nm \le 260$	[193, 198]
	A–IC	ε (230 nm) = 941 (l/mol cm) $\tilde{A} - \tilde{X}(0, 9, 0) - (0, 0, 0) \lambda = 613 \cdot 8 \text{ nm}$ (dye/flashllaser) (sensitivity not given)	[93, 203]
	A–LR LIF	$(\tilde{A} - \tilde{X}) \lambda = 614.5 \text{ nm}, \text{ dye/N}_2\text{-laser}$ ${}^2\tilde{A}'(0, 0, 0) - {}^2\tilde{A}''(0, 9, 0)$ ${}^{638} \leq {}^2/\text{nm} \leq 664. \text{ NAC: dye laser}$	[204] [387]
	E LMR	hydrocarbon flame $250 \le \lambda/\text{nm} \le 410$ MIR (v_2 , 5·3 μ m CO laser) FIR (rot, 108 μ m D ₂ O laser)	[197, 340] [194, 195]
	LER	$(v_3, 9.4 \mu \text{m CO}_2\text{-laser, Stark field})$ $(10 \le E/kV/cm \le 60)$	[196]
	LOG	$(\tilde{A}^{2}A''-\tilde{X}^{2}A')$ (0, 9, 0–0, 0, 0), 570–630 nm single-mode dye-laser	[341]
	ESR MS	(R-branch rotational states, X-band) (electron impact ionization) (HCO ⁺), photoionization Lyman α (10.2 eV) MgF ₂ -window	[5] [3,4,(202), 258]
FCO (\tilde{X})	A-IR DL	$(v_1 \text{ at } 5 \mu\text{m}, \text{ with Zeeman modulation,} multipass cell)$	[201]
	Ε	$\lambda = 425 \text{ nm FCO* from};$ $O_3 + \{cis, trans CHF = CHF, C_2HF_3, C_2CIF_3\}$	[199, 200]
$CH_3O(\tilde{X}^2E)$	A-UV	$(\tilde{A}^2 A_1 - \tilde{X}^2 E) 280 \leq \lambda/nm \leq 320$ modulated Hg-sensitized dissociation of R-CO-OCH ₃ , R=H, CH ₃	[207]
$CD_3O(\tilde{X}^2E)$	LIF	$(\tilde{A}^2 A_1, v'_3 = 2 - \tilde{X}^2 E, v''_3 = 0) \lambda = 303.9 \text{ nm}$ flashl. dye-laser (doubled)	[205, 210, 212, 213]
	E	$(\vec{A}^{2}A_{1} - \vec{X}^{2}E) 280 \leq \lambda/nm \leq 370,$ Ar*, Kr* + CH ₃ OH	[206, 210, 211]
	LMR MS	(250–650 μ m) FIR/CO ₂ -laser (electron impact ionization) (CH ₃ O ⁺), (CD ₃ O ⁺)	[208] [4,209]
$\operatorname{CH}_2\operatorname{OH}(\widetilde{X})$	LMR MS	$(117.7-657.2 \ \mu\text{m}) \ \text{CH}_2\text{F}_2 \text{ (a.o.) FIR/CO}_2\text{-laser}$ (electron impact ionization) $(\text{CH}_2\text{OD}^+, \text{CD}_2\text{OH}^+, \text{CD}_2\text{OD}^+)$	[215] [209]
$\operatorname{CH}_3 S(\tilde{X})$	MS	(electron impact ionization) (CH ₃ S ⁺)	[3,4]
NCO $(\tilde{X}^2 \Pi_i)$	A-UV	$(\tilde{A}^2 \Sigma^+ - \tilde{X}^2 \Pi) \lambda = 465 \text{ nm}$ $(\tilde{B}^2 \Pi - \tilde{X}^2 \Pi) \lambda = 440 \text{ nm}$	[229]
	LIF LIF	$(\tilde{A}^{2}\Sigma^{+}-\tilde{X}^{2}\Pi) \lambda = 465.8 \text{ nm dye-laser}$ (Intracavity excitation) cw-dye-laser/Ar ⁺ ion-laser	[227] [228]
	LMR ESR	$(\tilde{X}^2 \Pi, v_3 \text{ antisym. stretching mode) CO-laser (\tilde{X}^2 \Pi), (0, 0, 0), (0, 1, 0), (0, 2, 0) \text{ X-band}$	[230] [4,231]
$\mathrm{CH}_4\mathrm{N}\left(\widetilde{X} ight)$	MS	photoionization (CH_4N^+)	[257]
$\mathrm{CH}_3\mathrm{O}_2\;(\tilde{X}{}^2A'')$	A–UV	$220 \leq \lambda/\mathrm{nm} \leq 280, \ \lambda_{\mathrm{max}} = 235 \ \mathrm{nm}$ $\varepsilon (235 \ \mathrm{nm}) = 870 \ \mathrm{l/mol} \ \mathrm{cm}$	[217, 220, 221, 342] [218]
	A–IR	$\lambda = 1.2 - 1.4 \mu\text{m}$ modulated Hg-sensitized production, phase sensitive detection	[343]
-	MS	(electron impact ionization) ($CH_3O_2^+$)	[219]
$CF_{3}O_{2}(\ddot{X})$	MS	electron impact ionization, photoionization $(CF_3O_2^+)$	[224, 347]

W. Hack

Atom, radical	Method	Explanations	References
$\overline{C_2(X^{1}\Sigma_g^+)}$	A, E–VIS–IR A, E–UV A–UV CARS	$A^{1}\Pi_{u} - X^{1}\Sigma_{g}^{+}$ (Phillips) $672 \leq \lambda/nm \leq 1549$ $D^{1}\Sigma_{u}^{+} - X^{1}\Sigma_{g}^{+}$ (Mulliken) $231 \leq \lambda/nm \leq 241.5$ $F^{1}\Pi_{u} - X^{1}\Sigma_{g}^{+}$ $231 \leq \lambda/nm \leq 134.5$ $\omega_{1} = 532.0 \text{ nm Nd}: \text{YAG doub}; \omega_{2} = 631.8 \text{ nm}$ OPA (420-730 nm) tunable and dye 547 - 654 nm respectively	[335] [335] [335] [254, 255]
	LIF	$(A^{1}\Pi_{u}-X^{1}\Sigma_{g}^{+}, 0, 4)$ excitation at 690.9 nm emission (4, 1) at 790.8 nm, Ar ⁺ -laser 514.53 nm	[242, 245, 246]
	MS	(electron impact ionization) (C_2^+)	[3, 247]
$C_2 (a^3 \Pi_u)$	A–IR A, E–VIS–UV E–UV	$b {}^{3}\Sigma_{g}^{-} - a {}^{3}\Pi_{u} \text{ (Ballik-Ramsay) } 1 \cdot 1 \leq \lambda/\mu m \leq 2 \cdot 7$ $d {}^{3}\Pi_{g} - a {}^{3}\Pi_{u} \text{ (Swan) } 340 \leq \lambda/nm \leq 785$ $e {}^{3}\Pi_{u} 237 \leq \lambda/nm \leq 328 \cdot 5$ (the three lowest states are mentioned)	[335] [335] [335]
	LIF	($d {}^{3}\Pi_{g} - a {}^{3}\Pi_{u}$) (0, 0) excitation at $\lambda = 516.5$ nm emission at $\lambda = 559$ nm	[167, 242, 244]
$C_2 N (\tilde{X}^2 \Pi_r)$	A-VIS	$(\tilde{A}^{2}\Delta_{i}-\tilde{X}^{2}\Pi_{r}, \tilde{B}^{2}\Sigma^{-}-\tilde{X}^{2}\Pi_{r}, \tilde{C}^{2}\Sigma^{+}-\tilde{X}^{2}\Pi_{r})$ $469 \leq \lambda/nm \leq 472$	[249]
	LIF	$(A^{2}\Delta(0,0,0)-X^{2}\Pi(0,0,0))$ 471.6 $\leq \lambda/nm = 468.7$, dye-laser	[248]
$C H (\tilde{Y}^2 \Sigma^+)$		(electron impact ionization) (C ₂ N) 2:38 $\leq 1/\mu m \leq 3.3$; rot_vib. \tilde{Y} and $\tilde{A}^2 \Pi - \tilde{Y}^2 \Sigma$	[3] [234]
$C_{2}\Pi(X 2)$	LMR MS	FIR/CO_2 -laser (electron impact ionization) (C_H ⁺)	[260] [4 233]
$C_2O(\tilde{X} {}^3\Sigma^-)$	A-VIS LIF	$(\tilde{A} {}^{3}\Pi_{i} - \tilde{X} {}^{3}\Sigma^{-}) 530 \leq \lambda/\text{nm} \leq 900$ $(\tilde{A} {}^{3}\Pi_{i} - X {}^{3}\Sigma^{-})$, excitation at 689–588 nm flashl. dye-laser	[251] [262,253]
$C_2HO(\widetilde{X})$	MS	(electron impact ionization-photoionization) $(C_{+}HO^{+})$	[223]
$C_{2}H_{2}(\tilde{X})$	MS	(electron impact ionization) $(C_2H_2^+)$	[232]
$C_2F_3(\tilde{X})$	MS	(electron impact ionization) $(C_2F_3^+)$	[259]
$C_2H_5(\tilde{X}^2A)$	A-UV	$234 \leq \lambda/\text{nm} \leq 255, \ \lambda_{\text{max}} = 247 \text{ nm}$ $\epsilon (247) = 4.8 \times 10^2 \text{ l/mol cm}$	[237]
	MS	C_2H_5 - from C_2H_5 -N=N- C_2H_5 photolysis electron impact ionization-photoionization $(C_2H_5^+)$	[235, 236, 257]
$C_2H_5O(\tilde{X})$	LIF	$(\widetilde{A} - \widetilde{X} (3-0))$ CO-stretching mode $\lambda = 322 \cdot 8$ nm flashl./dye-laser (doubled)	[212, 214]
	E	$(320 \leq \lambda_E/nm \leq 440)$	[206, 210]
	MS	$C_2H_5O^*$ from C_2H_5ONO photolysis C_2D_5O , electron impact ionization, $(C_2H_5O^+)$, $(C_2D_5O^+)$	[3, 222]
$\mathrm{C_2H_4OH}(\tilde{X})$	MS	(electron impact ionization) $(C_2H_4OH^+), (C_2H_4OD^+)$	[222]
$CH_3CO(\tilde{X})$	A-UV	$CD_{3}CO 200 \leq \lambda/nm \leq 240, \ \lambda_{max} = 207 \ nm$ $\varepsilon (207) = 1 \times 10^{4} \ 1/mol \ cm$ $CH_{3}CO 200 \leq \lambda/nm \leq 240, \ \lambda_{max} = 215 \ nm$ $\varepsilon (215) = 1 \times 10^{4} \ 1/mol \ cm$	[239]
$\mathrm{CD}_3\mathrm{CO}\left(\tilde{X} ight)$	MS	photoionization (CH ₃ CO ⁺)	[238]
$C_2H_3O(\tilde{X})$	LIF MS	(0-0 band) $\lambda = 347.2 \text{ nm flashl./dye-laser}$ photoionization (C ₂ H ₃ O ⁺)	[216, 240] [258]
$C_2H_5O_2(\tilde{X})$	A-UV	$220 \leq \lambda/\text{nm} \leq 280, \ \lambda_{max} = 236 \text{ nm}$ $\varepsilon (236) = 1.02 \times 10^3 \text{ l/mol cm}$	[225, 226]

Atom, radical	Method	Explanations	References
	A–IR	$1 \le \lambda/\mu m \le 1.6$, electronic transition (0–0) $\lambda = 1.317 \ \mu m$	[343]
$\operatorname{CH}_3\operatorname{COO}_2(\tilde{X})$	A–UV	$210 \leq \lambda/nm \leq 270$, CH ₃ CO ₃ from CH ₃ CO+O ₂	[241]
$C_2H_4N(\tilde{X})$	MS	photoionization $(C_2H_4N^+)$	[257]
$C_2H_6N(\tilde{X})$	MS	photoionization $(C_2H_6N^+)$	[257]
$C_3(\tilde{X}^{-1}\Sigma_g^+)$	A–VIS–UV LIF MS	$(\tilde{A}^{1}\Pi_{u} - \tilde{X}^{1}\Sigma_{g}^{+}) 340 \leq \lambda/nm \leq 410$ $(A^{1}\Pi_{u} - X^{1}\Sigma_{g}^{+}) (0, 0, 0) - (0, 0, 0) \lambda = 405 \text{ nm}$ (electron impact ionization) (C ₃ ⁺)	[243] [242] [3,247]
Si (³ P _{0,1,2})	RA	$(4 {}^{3}P_{1} - 3 {}^{2}P_{0}) \lambda = 251 \cdot 43 \text{ nm}$ $(4 {}^{3}P_{2} - 3 {}^{3}P_{1}) \lambda = 250 \cdot 69 \text{ nm}$ $(4 {}^{3}P_{2} - 3 {}^{3}P_{2}) \lambda = 251 \cdot 61 \text{ nm}$	[310]
Si (¹ D ₂)	A–UV	$4s ({}^{1}P_{1}^{0}) - 3p^{2}({}^{1}D_{2}) \lambda = 288 \cdot 16 \text{ nm}$	[344]
Si (¹ S ₀)	RA–UV	$4s ({}^{1}P_{1}^{0}) - 3p^{2}({}^{1}S_{0}) \lambda = 390.53 \text{ nm}$	[344]
SiF $(X^2\Pi)$	A-VIS-UV	$(A^{2}\Sigma^{+}-X^{2}\Pi) \lambda = 436.8 \text{ nm}$ $(B^{2}\Sigma^{+}-X^{2}\Pi) \lambda = 289 \text{ nm}$	[336]
$\operatorname{SiF}_2(\widetilde{X}^1A)$	PES MS	(photo electron spectroscopy) (electron impact ionization) (SiF ⁺)	[339] [3]
SiO $(X^{1}\Sigma^{+})$	A MS	$(A^{1}\Pi - X^{1}\Sigma^{+}) 293 \ge \lambda/\text{nm} \ge 210$ (electron impact ionization) (SiO ⁺)	[336] [3]
SiC $(X^{1}\Sigma)$	MS	(electron impact ionization) (SiC ⁺)	[3]
$\operatorname{Si}_2({}^3\Sigma_g^-)$	A–VIS–UV MS	$(H^{3}\Sigma_{u}^{-} - X^{3}\Sigma_{g}^{-}) 452.6 \ge \lambda/\text{nm} \ge 386.3$ (electron impact ionization) (Si ₂ ⁺)	[333, 334, 335] [3]
Ge $({}^{3}P_{J})$	RA	$5s ({}^{3}P^{0}) - 4p^{2}({}^{3}P_{2}) \lambda = 275 \cdot 5 \text{ nm}$ $5s ({}^{3}P^{0}) - 4p^{2}({}^{3}P_{1}) \lambda = 259 \cdot 3 \text{ nm}$ $5s ({}^{1}P_{2}^{0}) - 4p^{2}({}^{3}P_{2}) \lambda = 249 \cdot 8 \text{ nm}$	[311, 345]
Ge $({}^{1}S_{0})$	RA	$4d({}^{1}P_{1}^{0}) \leftarrow 4p^{2}({}^{1}S_{0}) \lambda = 274.04 \text{ nm}$	[316]
GeC $(X^{1}\Sigma)$	MS	(electron impact ionization) (GeC ⁺)	[3]
GeO $(X^{1}\Sigma^{+})$	A MS	$(D^{1}\Sigma^{+}-X_{j}^{1}\Sigma^{+})$ 225 $\leq \lambda/nm \leq$ 336 (electron impact ionization) (GeO ⁺)	[336] [3]
GeF $(X^2 \Pi_{1/2})$	A MS	$(A^{2}\Sigma^{+}-X^{2}\Pi)$ 390 $\leq \lambda/nm \leq 520$ (electron impact ionization) (GeF ⁺)	[336] [3]
$\operatorname{GeF}_{2}(\widetilde{X}^{1}A)$	PES MS	(UV-photoelectron spectroscopy) (electron impact ionization) (GeF $_2^+$)	[338] [3]
$\operatorname{GeCl}_2(\tilde{X})$	MS	(electron impact ionization) (GeCl ₂ ⁺)	[3]
$\operatorname{Sn}({}^{3}P_{J})$	RA	6s $({}^{3}P_{1}^{0})$ -5 $p^{2}({}^{3}P_{0}) \lambda$ = 286·33 nm	[312, 346]
SnF $(X^2 \Pi_{1/2})$	A MS	$(A^{2}\Sigma^{+}-X^{2}\Pi_{r}) 630 \ge \lambda/nm \ge 460$ (electron impact ionization) (SnF ⁺)	[336] [3]
SnO $(X^{1}\Sigma^{+})$	A MS	$(D^{1}\Pi - X^{1}\Sigma^{+})$ 449 $\geq \lambda/nm \geq 307$ (electron impact ionization) (SnO ⁺)	[336] [3]
$\operatorname{SnF}_{2}(\widetilde{X})$	MS	(electron impact ionization) (SnF_2^+)	[3]
Pb $({}^{3}P_{J})$	RA	$(7s ({}^{3}P_{1}^{0})-6p^{2} ({}^{3}P_{0})) \lambda = 283 \cdot 3 \text{ nm}$	[313]
PbF $(X^2 \Pi_{1/2, 3/2})$	Α	$(A(\Omega = 1/2) - X^2 \Pi_{1/2, 3/2})$ $\lambda (0, 0) = 444.2 \text{ nm } \lambda (0, 0) = 704.3 \text{ nm}$	[336]
-	MS	(electron impact ionization) (PbF ⁺)	[3]
PbF_2 , $\operatorname{PbCl}_2(\widetilde{X})$	MS	(electron impact ionization) (PbF_2^+) , $(PbCl_2^+)$	[3]
PbO, PbS $(X \ ^{1}\Sigma^{+})$	A	$(A O^+ - X^1 \Sigma^+)$; PbO, λ (0, 0) = 507.0 nm PbS, λ (1, 2) = 549.81 nm	[336]
	MS	(electron impact ionization) (PbO $^+$), (PbS $^+$)	[3]

W. Hack

Atom, radical Method Explanations References H, D $({}^{2}S_{1/2})$ (Lyman α (²P-²S) $\lambda = 121.6$ nm sensitivity: RA [26, 27] $[H] \ge 2 \times 10^{-14} \text{ mol/cm}^3$ Lyman α (²P-²S) $\lambda = 121.6$ nm sensitivity: RF [28, 29, 30] $[H] \ge 2 \times 10^{-15} \text{ mol/cm}^3$ HNO*(1A"), (DNO)* ChL [31, 33] $(X-\text{band})^{2}S_{1/2}$, H, I = 1/2, two lines D, I = 1, three [5, 384] ESR lines sensitivity: $[H] \ge 8 \times 10^{-13} \text{ mol/cm}^3 \text{ S/N} = 1$ MS electron impact-photoionization (H⁺) [3,4] $O({}^{3}P_{2,1,0})$ ${}^{3}S_{1}$ - ${}^{3}P_{J} \lambda/\text{nm} = (130.22; 130.49; 130.6)$ RA [34, 35] $({}^{3}S_{1} - {}^{3}P_{2,1,0})$ triplet not resolved at $\lambda = 130$ nm RF [37, 38, 58] sensitivity: $[O(^{3}P)] \ge 6.6 \times 10^{-14} \text{ mol/cm}^{3}$ ChL $NO_2^* (O + NO \rightarrow NO_2^*)$ [32, 36] $({}^{3}P_{0}^{-3}P_{1}) \lambda = 147.8 \,\mu\text{m}; \, 145.7 \,\mu\text{m}$ LMR [23, 24] $(CH_3NH_2, CH_3OD/CO_2$ -laser) ESR (X-band) $({}^{3}P_{2})$, four lines, $({}^{3}P_{1})$, two lines [5, 6, 7] ${}^{3}P_{0}$ (none) sensitivity: $[O({}^{3}P)] \ge 10^{-13} \text{ mol/cm}^{3}$ (electron impact ionization) (O⁺) MS [3,4] $O_2(X^{3}\Sigma_{g}^{-})$ $A^{3}\Sigma_{u}^{+}-X^{3}\Sigma_{e}^{-}$ 243 $\leq \lambda/\mathrm{nm} \leq 488$ A-UV [1] λ (0, 0) = 285.7 nm $B^{3}\Sigma_{u}^{-}-X^{3}\Sigma_{g}^{-}$ (Schumann-Runge) [335] $175 \leq \lambda/\mathrm{nm} \leq 535, 130 \leq \lambda/\mathrm{nm} \leq 275,$ λ (0, 0) = 202.601 nm (Two lowest transitions of the ${}^{3}\Sigma$ -state are mentioned, more than 16 further systems are known, see e.g. 335) $X^{3}\Sigma_{g}^{-}$ (N=3, J=4, M=4)-(N=5, J=5, M=4) LMR [2] 337 µm, HCN-laser $X(^{3}\Sigma_{\sigma}^{-})$ $(N = 13, J = 14, M) - (N = 15, J = 14, M') 119 \mu m$ and (N = 21, J = 22, M) - (N = 23, J = 22, M')78 μ m, H₂O-laser ESR $({}^{3}\Sigma_{g}^{-})$ X-band v=0, 1 X-band [5, 369] (substance to calibrate the Q-factor for magnetic dipole transitions) MS electron impact- and photoionization (O_2^+) [3] $O_2(a^1\Delta_a)$ E $O_2 ({}^{1}\Delta_{g}) - O_2 ({}^{3}\Sigma_{g}) + hv (\lambda = 1270 \text{ nm})$ [386] E ('dimol emission') [383, 385] vibrational states: $2O_2 ({}^1\Delta_g) \rightarrow 2O_2 ({}^3\Sigma) + hv (\lambda = 634 \text{ nm})$ (0+0)-(0+0)+hv $(\lambda = 634 \text{ nm})$ (0+0)-(1+0)+hv $(\lambda = 703 \text{ nm})$ (1+0)-(0+0)+hv $(\lambda = 579 \text{ nm})$ Ε emission $O_2(^1\Delta)$ from: [385] $2O_2({}^{1}\Delta_g) \rightarrow \widetilde{O}_2({}^{1}\Sigma_g^+)_{v'} + O_2({}^{3}\Sigma_g^-)$ ($\lambda = 697$; 706·1) [366] LMR $(a^{1}\Delta_{e}) v = 0, J = 1, J = 4, 5, 7, 8, 9,$ $889.1 \ge \lambda/\mu m \ge 392.1$ $(C_2H_2F_2, CH_2F_2, C_2H_3Cl, CH_3OH)$ FIR/CO₂-laser ESR ('EPR') X-band magnetic dipole transitions [5, 384] sensitivity: $[O_2({}^1\Delta_e)] \ge 5 \times 10^{-11} \text{ mol/cm}^3$ [379, 380] PI (photoionization) Ar-lamp, LiF-window $\lambda = 106.7$ nm absolute calibration with NO [381]

Table 2. Atoms and radicals without elements of the fourth group of the periodic table.

Atom, radical	Method	Explanations	References
	MS E	electron impact- and photoionization (O_2^+) (calorimetric measurements: Co resistance-wire)	[3] [382]
OH $(X^2 \Pi_{3/2, 1/2})$ $(0 \le n \le 9)$	A–UV	$310 \leq \lambda/nm \leq 314$, $2700 \leq T/K \leq 6000$, Hg-high-pressure lamps	[42, 43]
	RA	$(A^2\Sigma^+ - X^2\Pi) Q_1^4 \lambda = 308.3278 \text{ nm},$ H ₂ O/Ar-discharge lamp F = 1.4×10^{-4}	[45]
	LA	$(A^2\Sigma^+(v=0)-X^2\Pi(v=0)$ $Q_1^1, \lambda=307.844 \text{ nm}, Q_1^2, \lambda=307.955 \text{ nm},$ dye/Ar^+ -laser (doubled), sensitivity: $[OH] \ge 2 \times 10^{-15} \text{ mol/cm}^3 S/N = 1$ 1 m absorption length multipase (5 times)	[49]
	RF	$(A^2\Sigma^+ - X^2\Pi (0,0)) \lambda = 310 \text{ nm},$ sensitivity: $[OH] \ge 1.7 \times 10^{-16} \text{ mol/cm}^3$	[40, 41, 46, 350]
	LIF	flow system $p = 3 \text{ mod}$; the 1's $(A^2 \Sigma^+ - X^2 \Pi (1, 0)) \lambda_L = 282.2 \text{ nm},$ flashl./dye-laser (doubled) sensitivity: $[OUI] > 2 \times 10^{-17} \text{ mol}(\text{cm}^3 (100 \text{ messure}^2))$	[39, 44, 47]
	LMR	$(^{2}\Pi_{3/2, 1/2}) \lambda_{L}/\mu m = 79; 118.6;$ $(^{2}\Pi_{3/2, 1/2}) \lambda_{L}/\mu m = 79; 118.6;$ $(0 \le v \le 9) 108 \ \mu m \ H_{2}O, \ D_{2}O\ -laser$ $(\lambda/\mu m = 78; 84; 96; 118.8; 163) \ FIR/CO_{2}\ -laser$ sensitivity: $[OH] \ge 2 \times 10^{-18} \ mol/cm^{3} \ S/N = 1$	[9, 10, 11, 12, 16]
	ESR	$(^{2}\Pi_{3/2, 1/2}) 0 \le v \le 4, X$ -band sensitivity: $[OH] \ge 3.3 \times 10^{-14} \text{ mol/cm}^3 \text{ S/N} = 1$	[5, 8, 13, 348]
	Ε	(IR) OH ⁺ from: H+O ₃ , OH ($v \le 9$) and H+NO, OH ($v \le 4$)	[351]
	MS CARS	electron impact-photoionization (OH ⁺)	[3, 4, 50] [395]
OD $(X^2 \Pi_{3/2, 1/2})$	RA	$(A^{2}\Sigma^{+}-X^{2}\Pi)(0,0)Q_{1}^{1}$ $\lambda = 307.6 \text{ nm} D_{2}\Omega/Ar \text{ discharge lamp}$	[48]
	LIF	$(X^2\Pi (0 \le v \le 2)) A^2\Sigma^+ - X^2\Pi,$ dye/Nd: YAG (doubled)	[91]
	LMR	$(X^2 \Pi_{3/2}) \ 0 \le v \le 5, \ \lambda_L = 171 \ \mu m \ D_2 O$ -laser $\lambda/\mu m = 118 \cdot 8; \ 96 \cdot 5; \ 215 \cdot 4 \ (CH_3 OH, CH_3 OD)$ FIR /COalaser	[12, 15]
	ESR	$({}^{2}\Pi_{3/2}, J=3/2) \ 0 \le v \le 5, X$ -band	[5,14]
$\operatorname{HO}_2(\tilde{X}^2A'')$	A–UV	$220 \le \lambda/\text{nm} \le 280$, at $T = 1000 \text{ K}$ $\varepsilon_{10} (230 \text{ nm}) = 6.6 \times 10^2 \text{ l/mol cm}$ $\lambda = 227.5 \text{ nm} \varepsilon_{10} = 4.9 \times 10^3 \text{ l/mol cm}$ at $T = 298 \text{ K}$ sensitivity: $ \text{HO}_2 \ge 8 \times 10^{-13} \text{ mol/cm}^3$	[51, 53, 54]
	A–IR	$(^{2}A'^{-2}A'')$ 1·1 $\leq \lambda/\mu m \leq 1.5$ $\epsilon (1.5 \mu m) = 10(1/mol cm)$	[56]
	A-IR-DL ChL	$({}^{2}A'')v_{3} \lambda = 9.09 \mu m$ $({}^{2}A' 0, 0, v'_{3}) - ({}^{2}A'' 0, 0, 0)$ from: $HCO + O_{2}({}^{1}\Delta_{g}) \rightarrow HO_{2}({}^{2}A', 0, 0, v'_{3}) + CO$ $HO_{2}({}^{2}A')$ after energy transfer	[57] [55]
	LMR	HO ₂ ² A'' +O ₂ (¹ Δ_{g}) \rightarrow HO ₂ (² A', v ₃) +O ₂ (³ Σ_{g}) (HO ₂ \tilde{X} , v ₃) 9·1 μ m CO ₂ -laser, FIR (λ/μ m = 78·4; 79·09; 118·6) H ₂ O-laser (λ/μ m = 72·75; 84·3; 107·72) D ₂ O-laser (λ/μ m = 170·1; 392) CH ₃ OH/CO ₂ -laser sensitivity: HO ₁ > 2 × 10 ⁻¹⁶ mol/cm ³	[19, 20, 22]
	ESR	$(^{2}A'')$ (1 _{1.0} -1 _{1.1}) X-band (9 GHz) sensitivity: (very low)	[21]
	MS	(electron impact ionization) (HO_2^+)	[3, 4, 52]

W. Hack

Atom, radical	Method	Explanations	References
$\overline{\mathrm{DO}_2\left(\widetilde{X}\ ^2A'' ight)}$	A–UV	$\lambda = 227.5 \text{ nm } \varepsilon_{10} = 4.1 \times 10^3 \text{ l/mol cm}$ at 298 K, sensitivity: [DO ₂] $\geq 6.7 \times 10^{-13} \text{ mol/cm}^3$	[54]
	A–IR ChL	$({}^{2}A' - {}^{2}A'')$ 1·1 $\leq \lambda/\mu m \leq 1.5$ and $\lambda = 2.05 \mu m$ $({}^{2}A', 0, 0, v'_{3}) - ({}^{2}A'', 0, 0, 0)$ from DCO + O $({}^{1}A) \rightarrow DO$ $({}^{2}A', 0, 0, v'_{3}) + CO$	[56] [55]
	LMR	$({}^{2}A''v_{2}), 9.8 \ \mu m CO_{2}$ -laser FIR (163 $\leq \lambda/\mu m \leq 513$)	[17, 18]
	ESR	$(CH_3OH; N_2H_4; CH_3OD; a.o.)/CO_2-laser(2A'') X-band 8-9; 9-3 GHzsensitivity: (low)$	[17]
F (² P _{3/2, 1/2})	RA-VUV	$(3s^2P_J-2p^{5\ 2}P_J)$ $\lambda/nm = 95.48; 95.55; 95.85; 95.19$ $F_2/He-discharge lamp window:$ CHS collimated hole structures sensitivity:	[60, 352]
	RF	$[F(^{2}P_{3/2})] \ge (0.2-2) \ 10^{-12} \ \text{mol/cm}^{3}$ $(3s^{2} ^{2}P_{J} - 2p^{5} ^{2}P_{J})$ $95 \le 2/m \le 98 \ \text{E} \ /\text{He-discharge lamp}$	[353] [352]
	ChL	HF+-IR	[59, 349, 354, 355]
	ESR	F + NO→NOF* (yellow emission) $({}^{2}P_{3/2,1/2})$ X-band sensitivity: $[F({}^{2}P_{3})] > 5 \times 10^{-14} \text{ mol/cm}^{3}$	[61] [5,71]
	MS	(electron impact ionization) (F^+)	[6, 79]
$C1 ({}^2P_{3/2})$	RA-UV	$({}^{2}P_{1/2}) (3p^{4} 4s^{2}P_{3/2} - 3p^{5} {}^{2}P_{1/2}^{0}) \lambda = 136.34 \text{ nm}$ ${}^{2}D_{3/2} - {}^{2}P_{3/2} \lambda = 118.875 \text{ nm}$	[356] [353]
	A-IR-DL	$(3p^{3}, {}^{2}P_{1/2} {}^{-2}P_{3/2}) \lambda = 11 \cdot 3 \mu m$ IR-diode laser (unable)	[70]
	RF-UV	$(^{+}P^{-2}P)$ multiplet at $\lambda = 138.0$ nm; sensitivity: $[Cl(^{2}P_{-1})] > 8 \times 10^{-14}$ mol/cm ³	[58, 63, 65]
	TALIF	$(4p^{1}({}^{2}F_{7/2})-3p({}^{2}P_{3/2}))$ absorption, two photon process $\lambda = 210 \cdot 1$ nm, dye/YAG (doubled)/ArF-Exiplex-laser enhanced, Raman shifted H ₂ /D ₂ , emission $(4p^{1}({}^{2}F_{7/2})-4s^{1}({}^{2}D_{5/2})) \lambda = 904$ nm sensitivity: $[Cl({}^{2}P_{2/2})] = 1.7 \times 10^{-11}$ mol/cm ³	[66]
	ChL	HCl $(v = 1, 2)$ $\lambda = 3.5 \mu m$ from Cl + H ₂ S; NOCl titration: Cl + NOCl $\rightarrow 0$ + NO NO + Cl \rightarrow ClNO*	[62, 64]
	LMR ESR	$({}^{2}P_{1/2} - {}^{2}P_{3/2}) \lambda = 11 \cdot 33 \mu m {}^{13}C^{16}O_{2}$ -laser $({}^{2}P_{3/2}, {}^{2}P_{1/2}) (X$ -band) contributer $C({}^{2}P_{3/2}, {}^{2}P_{1/2}) = 1 \cdot 5 \times 10^{-14} \text{mes} 10^{-14} 10^{-14} \text{mes} 10^{-14} $	[25] [5]
	MS	(electron impact ionization) (Cl^+ , Cl^{2+})	[6, 79]
Br $({}^{2}P_{3/2})$	RA-UV	Br ${}^{2}P_{3/2}$ (5 ${}^{2}P_{3/2}$ -4 ${}^{2}P_{3/2}$) $\lambda = 148.9$ nm; Br* (5 ${}^{2}P_{1/2}$ -4 ${}^{2}P_{1/2}$) $\lambda = 153.2$ nm	[67]
	RF	$(5^4 P_{3/2} - 4^2 P_{3/2}) \lambda = 157.7 \text{ nm},$ sensitivity: $[Br(^2 P_{3/2})] \ge 2.5 \times 10^{-14} \text{ mol/cm}^3$	[58, 69]
	ESR	$({}^{2}P_{3/2})$ Br ⁷⁹ , Br ⁸¹ (X-band) sensitivity: [Br({}^{2}P_{3/2})] \ge 5 \times 10^{-14} \text{ mol/cm}^{3}	[5]
	MS	(electron impact ionization) (20–30 and 70 eV) (Br^+, Br^{2+})	[6, 79]
$({}^{2}P_{3/2,1/2})$	RA-UV	$(6s^2 P_{3/2} - 5p^2 P_{1/2}) \lambda = 206.2 \text{ nm},$ I ₂ -discharge lamp	[68]
	RF-UV	$(\tilde{6s}({}^{4}P_{5/2}) - \tilde{5p}^{2}({}^{2}P_{3/2})) \lambda = 183.0 \text{ nm}$ sensitivity: $[I({}^{2}P_{3/2})] \ge 1.3 \times 10^{-14} \text{ mol/cm}^{3}$	[58]

Atom, radical	Method	Explanations	References
	ESR	${({}^{2}P_{3/2})}(X-\text{band})$ sensitivity: $[I({}^{2}P_{3/2})] \ge 5 \times 10^{-14} \text{ mol/cm}^3$	[5]
	MS	(electron impact ionization) 70eV (I ⁺)	[6, 79]
FO $(X^2\Pi)$	LMR MS	FO $(X^2\Pi_{3/2})$ 9.76 $\geq \lambda/\mu m \geq$ 9.59 CO ₂ -laser (electron impact ionization) 70 eV (FO ⁺)	[358] [79, 80]
ClO ($X^2 \Pi_{3/2, 1/2}$)	A–UV	$(A-X)$ (11–0) $\lambda = 277.2$ nm, $\varepsilon = 4.37 \times 10^3$ l/mol cm	[74]
	A–IR–DL	$({}^{2}\Pi_{3/2} \text{ and } {}^{2}\Pi_{1/2}) 11.77 \ge \lambda/\mu m \ge 11.44$ band strength (35 CIO R 13/2, $\Omega = 1/2$, $m = 853:123 \text{ cm}^{-1} \sigma = 12.4 \text{ cm}^{-2} \text{ atm}^{-1}$	[76, 359]
	MW	${}^{2}\Pi_{3/2}, {}^{2}\Pi_{1/2}(v=0), J=9/2-7/2$ 164 $\leq \omega/GHz \leq 167$	[75]
	LMR	${}^{2}\Pi_{3/2}(v=2\leftarrow0) \ \lambda/\mu m = 6\cdot02; 595; CO-laser$ ${}^{37}Cl^{16}O(X {}^{2}\Pi_{3/2}, v=0), J(23/2-21/2), \lambda = 713\cdot1 \ \mu m \ DCOOH/CO_{2}-laser$	[72, 357]
	ESR MS	sensitivity: $[ClO (^{2}\Pi_{3/2})] \ge 5 \times 10^{-14} \text{ mol/cm}^{3}$ $(^{2}\Pi_{3/2})$ X-band, electric dipole transitions (electron impact ionization) 70 eV (ClO ⁺)	[5] [73, 79]
$\operatorname{BrO}(X^2\Pi)$	A–UV	$(A^2\Pi - X^2\Pi (v''=0))$ strong absorption $300 \leq \lambda/nm \leq 355$	[77, 81]
	ESR	ε (338·3 nm) = 4·8 × 10 ³ (1/mol cm) maximum at λ = 338·3 nm (0-4)-band (X ² Π _{3/2}) X-band	[5]
χ.	MS	electric dipole transition Stark modulation (electron impact ionization) $70 \text{ eV} (^{79,81}\text{BrO}^+)$	[78, 79]
IO $(X^2\Pi)$	A-VIS-UV	$(A^{2}\Pi - X^{2}\Pi)$ (3–0), (4–0), (2–0), (2–2), (1–1) 418 $\leq \lambda/\text{nm} \leq 470$, maximum (4–0), ε ($\Delta \lambda = 0.5 \text{ nm}$) = 3 × 10 ³ l/mol cm	[81]
	ESR MS	$(X^2 \Pi_{3/2})$ X-band, electric dipole transition (electron impact ionization) 70 eV (IO ⁺)	[5] [79]
$\operatorname{FO}_2(\widetilde{X})$	A–UV	$200 \le \lambda/nm \le 240, \lambda_{max} = 210 \text{ nm},$ s (210 nm) = 10 ⁴ 1/mol cm	[125, 361]
	LMR	FO ₂ (\tilde{X}) 119 $\leq \lambda/\text{nm} \leq 742$; (CH-OH, CD-OD, CHOOH a.o.) FIR/CO ₂ -laser	[360]
	MS	(electron impact ionization) FO_2^+)	[3]
$\operatorname{ClO}_2(\tilde{X}^2B_1)$	A–UV	$(\tilde{A}^2 A_2 - \tilde{X}^2 B_1) \lambda = 322 \text{ nm}, 361.5 \text{ nm},$ $\varepsilon (351.5 \text{ nm}) = 6.86 \times 10^3 (1/\text{mol cm})$	[74]
	LMR MS	$(\hat{X}^2 B_1) v_1 = 1 - 0 \lambda = 10.51 \mu m P(12)$ -line CO ₂ -laser (electron impact ionization) (ClO ₂ ⁺)	[362] [3]
Li (² S _{1/2})	SI	Langmuir-Taylor detector, very sensitive for atoms of the first group: ion yield $n^+/n = c \exp \{-(J-\phi)/kT\}$ $J = \text{ionization energy}, \phi = \text{work function}$	[325, 376, 377, 378]
Na, K $({}^{2}S_{1/2})$	LIF	$({}^{2}P_{1/2}, {}^{2}P_{3/2} - {}^{2}S_{1/2}) \lambda/nm = 589; 589.6,$ sensitivity: [Na] $\geq 2 \times 10^{-24} \text{ mol/cm}^{3}$	[326]
	SI	Langmuir–Taylor detector, very sensitive molecular beam detector, sensitivity $K > Na$ see above	[325, 376, 377, 378]
	ESR	$(^{2}S_{1/2})$ X-band (H-atom analogous)	[5]
Rb, Cs $({}^{2}S_{1/2})$	SI	very sensitive molecular beam detector, Langmuir-Taylor detector, sensitivity Cs > Rb see above	[325, 376, 377]
	ESR	$(^{2}S_{1/2})$ X-band, H-atom analogous	[5]

182

W. Hack

Atom, radical	Method	Explanations	References
$ \begin{array}{c} \overline{N} \ ({}^{4}S_{3/2}) \\ ({}^{2}D_{3/2, 5/2}) \\ ({}^{2}P_{J}) \end{array} $	A-UV	$({}^{4}S_{3/2} - {}^{4}P_{5/2,3/2,1/2})$ ($\lambda/nm = 119.955$; 120.022; 120.071) N ₂ /Ar-discharge lamp	[84, 85, 88]
		N $(2^{2}D) 2p^{3} (^{2}D) - 3s (^{2}P) \lambda = 149.3 \text{ nm}$ N $(2^{2}P) 2p^{3} (^{2}P_{3/2}) - 3s (^{2}P_{3/2}) \lambda = 174.3 \text{ nm},$ N $/Ar$ discharge lamp	[120]
	RF	$2p^2 3s ({}^4P_{1/2,3/2,5/2}) - 2p^3 ({}^4S_{3/2})$, sensitivity: $\lambda = 120 \text{ nm } [N({}^4S)] \ge (1-1.7) \times 10^{-4} \text{ mol/cm}^3$	[86, 340]
	TI	NO titration N (${}^{4}S$) + NO \rightarrow N ₂ + O (${}^{3}P$) The appearance of a green-yellow emission	[87]
	ESR	indicates the end-point NO+O→NO ₂ + $h\nu$ (⁴ S _{3/2}) X-band, (² D _{5/2,3/2}) X-band, sensitivity: [N(² D)] $\ge 5 \times 10^{-13}$ mol/cm ³ S/N = 1	[5,83]
	MS	(electron impact ionization, photoionization) (N^+)	[6, 79]
$N_3(\tilde{X})$	MS	(electron impact ionization $E = 20 \text{ eV}$) (N ₃ ⁺)	[82]
NH, ND $(X^{3}\Sigma^{-})$	RA-L	$(A^{3}\Pi - X^{3}\Sigma^{-})0, 0R_{2}$ (8) dye flashllaser (doubled)	[102]
	RF LIF	$(A^{3}\Pi - X^{3}\Sigma^{-})$ $\lambda = 336 \text{ nm}$ $(A^{3}\Pi_{i} - X^{3}\Sigma^{-})$ $(1,0)\lambda = 305 \text{ nm}$ $(0,0)$ $\lambda = 336 \text{ nm}$	[89] [90]
	LMR	dye flashllaser (doubled) $(^{3}\Sigma^{-}) N = 1 \rightarrow 0 \lambda/\mu m = 302; 315,$ CH OOH: CH NH /CO -laser	[103]
	MS	(electron impact ionization) (NH ⁺)	[3, 4, 328]
NH $(a^{1}\Delta)$ $(b^{1}\Sigma^{+})$	LIF	$(c^{1}\Pi - a^{1}\Delta) \lambda = 324 \text{ nm},$ dve/N ₂ -laser (doubled)	[363]
(* _)	ChL	NH $({}^{1}\Delta)$ + HN ₃ $({}^{1}A')$ -NH ₂ $({}^{2}A_{1})$ + N ₃ $({}^{2}\Pi_{g})$ NH ₂ $({}^{2}A_{1})$ -NH ₂ $({}^{2}B_{1})$ + hv chemiluminescence	[329]
	E	NH $(b {}^{1}\Sigma^{+})$ from VUV photolysis of NH ₃ $(b {}^{1}\Sigma) - (X {}^{3}\Sigma) + hv \lambda = 470.71$ nm	[330]
	MS	$(a^{T}\Delta)$ (electron impact ionization) (NH ⁺)	[328]
NF $(X^{3}\Sigma^{-})$	A–VIS–IR	$(a^{1}\Delta - X^{3}\Sigma^{-})\lambda = 874.2 \text{ nm}$ $(b^{1}\Sigma^{+} - X^{3}\Sigma^{-})(0, 0)\lambda = 528.8 \text{ nm}$	[336]
	E	NF $(b^{1}\Sigma^{+})$ - $(X^{3}\Sigma^{-})(0,0)(0,1)(1,1)$ NF $(b^{1}\Sigma^{+})$ from energy transfer: NF $(a^{1}\Lambda)$ + $\Omega_{2}(a^{1}\Lambda)$ \rightarrow NF $(b^{1}\Sigma^{+})$ + $\Omega_{2}({}^{3}\Sigma^{-})$	[123]
	ESR	NF ($^{3}\Sigma^{-}$), X-band	[5]
	MS	(electron impact ionization) (NF ⁺)	[4]
$ \begin{array}{c} NF & (a^{\perp}\Delta) \\ & (b^{\perp}\Sigma^{+}) \end{array} $	E	NF $(a^{1}\Delta)$ from H + NF ₂ $(a^{1}\Delta - X^{3}\Sigma) (0,0) (1,1) (2,2) 870 \le \lambda/\text{nm} \le 880$ NF $(b^{1}\Sigma^{+}-X^{3}\Sigma) (0,0) (1,5) = 530 \text{ nm}$	[121, 122]
	LMR	$(a^{T} \Delta) J = 7 \rightarrow 8, \lambda = 513 \mu\text{m}$ (a^{T} \Delta) J = 7 \rightarrow 8, \lambda = 513 \mu m CHOOH/CO algorithm	[108]
	ESR	NF $(a^{1}\Delta)$, X-band	[5]
NCl $(X^{3}\Sigma^{-})$ $(b^{1}\Sigma^{+})$	A–VIS E		[336] [262]
		$\lambda (0,0) = 664 \text{ nm};$ NCl ($h^{1}\Sigma$) from: Cl + N - NCl* + N	
	MS	(electron impact ionization) (NC1 ⁺)	Г821
NBr $(X^{3}\Sigma^{-})$	A-VIS	$(h^{1}\Sigma^{+}-X^{3}\Sigma^{-})$ 550 $\leq \lambda/nm \leq 650$	[336]
·· (–)	E	$(A^{1}\Sigma^{+}-X^{3}\Sigma^{-}) (0,0) (1,0) \lambda (0,0) = 665 \text{ nm}$ NBr (¹ Σ) from: Br + N ₃ \rightarrow NBr* + N ₂	[262]

Atom, radical	Method	Explanations	References
$\overline{\mathrm{NH}_2\left(\tilde{X}^2B_1\right)}$	RA-L	$(\tilde{A}^{2}A_{1}-\tilde{X}^{2}B_{1})(0,9,0-0,0,0)^{P}Q_{1,7}$ $\lambda = 597\cdot375$ nm, dye flashllaser $f_{i} = 2\cdot04 \times 10^{-4}$ NH ₂ /O ₂ -flame atm. pressure $\varepsilon_{max} = 8\cdot40 \times 10^{3}$ l/mol cm, 4 bar NH ₃ c. w. dye-laser	[95, 102]
	A–IC LIF	$\begin{array}{l} 600 \leqslant \lambda/nm \leqslant 610 \text{ dye flashllaser} \\ (\tilde{A}^2 A_1 - \tilde{X}^2 B_1) (0, 9, 0) - (0, 0, 0) \lambda = 597.8 \text{ nm} \\ \text{c.w. dye/Ar}^+ \text{ ion-laser; sensitivity:} \\ \text{ENH} (\tilde{X}^2 B) \gg 10^{-16} \text{ mol}/\text{cm}^3 \end{array}$	[93] [92,94]
	LMR	$(\tilde{X}^{2}B_{1})\nu_{2} \ 0 \le N \le 7, \ 0 \le K_{a} \le 5 \ \text{CO-laser}$ $^{2}B_{1} \ (2_{20}-3_{31}) \ \lambda = 78 \ \mu\text{m}, \ (1_{11}-2_{20}) \ \lambda = 118.6 \ \mu\text{m}$ H ₂ O laser $7_{2e}-7_{4e} \ (\lambda = 108 \ \mu\text{m} \ D_{2}\text{O-laser})$	[98, 100] [99]
	MS	(electron impact ionization) (NH_2^+)	[3,4]
ND ₂ ($\tilde{X}^2 B_1$)	LMR	ND ₂ ${}^{2}B_{1}v_{2} 9 \leq \lambda/\mu m \leq 10$ CO ₂ -laser	[97]
NHD $(\tilde{X}^2 A'')$		NHD $(\tilde{X}^2 A'')$ (0, 0, 0) $3_{13} \leftarrow 2_{02}$ and $4_{13} \leftarrow 3_{22}$ $\lambda/\mu m = 211.263$; 374.086 FIR/CO ₂ -laser	[98]
NHF ($\tilde{X}^{2}A''$)	А	$\tilde{A}^{2}A'(0, v'_{2}, 0) - \tilde{X}^{2}A''(0, 0, 0) 0 \le v'_{2} \le 3 400 \le \lambda/nm \le 500$	[389, 390]
	E	$ \tilde{A}^{2} A^{\tilde{\prime}} (0, 0, 0) - \tilde{X}^{2} A^{\prime\prime} (0, v_{2}^{\prime}, 0) 0 \leqslant v_{2}^{\prime\prime} \leqslant 3 450 \leqslant \lambda/\text{nm} \leqslant 650 \text{NHF} (\tilde{A}^{2} A^{\prime}) \text{ in } \text{N}_{2}\text{H}_{4}\text{-}\text{F}_{2}\text{-flames} $	[391]
$\operatorname{NF}_2(\widetilde{X}^2B_1)$	A-UV	$(\tilde{A} - \tilde{X})$ 235 $\leq \lambda/nm \leq 280$	[147]
	A-IK-DL IMP	$(X^2B_1) v_1; v_3 \lambda/\mu m = 9.091; 10.75$ NF $(\tilde{Y}) v_1 = 2.4 \mu m CO_1 locar$	[101]
	ESR	X-hand magnetic dipole transition (weak)	[5]
	MS	(electron impact-, photoionization) (NF $_2^+$)	[3,79]
NCl ₂ ($\tilde{X}^2 B_1$)	MS	(electron impact ionization) (NCl ⁺ ₂)	Г827
$N_{2}H_{3}(X)$	MS	(electron impact ionization) $(N_2H_3^+)$	[4]
NO $(X^2 \Pi_{1/2, 3/2})$	Α, Ε	$B^{2}\Pi - X^{2}\Pi (\beta \text{-bands}) 650 \leq \lambda/\text{nm} \geq 200$ $A^{2}\Sigma^{+} - X^{2}\Pi (\gamma \text{-bands}) 340 \geq \lambda/\text{nm} \geq 195$ $C^{2}\Pi - X^{2}\Pi (\delta \text{-bands}) 210 \geq \lambda/\text{nm} \geq 184$ $D^{2}\Sigma^{+} - X^{2}\Pi (\epsilon \text{-bands}) 190 \geq \lambda/\text{nm} \geq 170$ $B^{\prime 2}\Lambda - X^{2}\Pi (\beta \text{-bands}) 200 \geq \lambda/\text{nm} \geq 140$	[336] [364]
	A–LR	$5.17 \le \lambda/\mu m \le 5.57$ CO-laser (White cell)	[265]
	LIF	$(A^{2}\Sigma^{+}, v') - (X^{2}\Pi, v'')$ (v', v'') = (0, 0), (0, 1), (0, 2) 222 $\leq \lambda/\text{nm} \leq 300$ dv/N laser (doubled)	[263, 269]
	LMR	$({}^{2}\Pi_{1/2}, J = 25/2) - ({}^{2}\Pi_{3/2}, J = 23/2)$ $\lambda = 78$: 79: 119 µm H ₂ O-discharge-laser	[264]
	ESR	${}^{2}\Pi_{3/2}$, $J = 3/2$ X-band magnetic and electric dipole transitions (substance to titrate the filling factor for plastic dipole transition)	[5,266]
х	MS	(electron impact ionization, photoionization) resonant photoionization (NO^+)	[3]
	MPI	enhanced by resonance two-photonionization $270 \le \lambda/\text{nm} \le 317 \text{ dye/N}_2\text{-laser (doubled)},$ sensitivity: [NO] $\ge 1 \text{ p.p.m. atm. flame}$	[270]
$\operatorname{NO}_2(\widetilde{X}^2A_1)$	A UV–VIS–IR	$\tilde{A}(^{2}B_{2})-\tilde{X}^{2}A_{1}$ 1000 $\geq \lambda/\text{nm} \geq 320$ (transitions to the lowest state only are mentioned)	[275]
	LIF	$\tilde{A}^2 B_2 - \tilde{X}^2 A_1 250 \leq \lambda/\text{nm} \leq 900$ lasers used: dve (tunable).	[74, 276]
		He-Cd (441.6 nm), Ar ⁺ (514.5 nm) Kr ⁺ Nd: YAG (532 nm)	[274]

W. Hack

Atom, radical	Method	Explanations	References
	LMR	$\tilde{X}^2 A_1, v_2(v_2 = 1-0) R_6(N) - R_{11}(N) CO_2$ -laser $\tilde{X}^2 A_1, v_3^2 Q_4$ (4), $\lambda = 6.202 \mu \text{m}$ -CO-laser	[277, 278]
	ESR	$\binom{2A_1}{X}$ -band magnetic dipole transitions (very broad and weak lines)	[5]
	MS	(electron impact- and photoionization) (NO_2^+)	[3]
$\operatorname{NO}_{3}(\widetilde{X})$	A-VIS	$A-X v_1(0-0) \lambda = 662 \text{ nm} v_1(1-0) \lambda = 627 \text{ nm} \varepsilon (662 \text{ nm}) = 1 \times 10^4 \text{ l/mol cm}$	[393, 394]
HNO $(\tilde{X} {}^{1}A')$	A-VIS	$({}^{1}A''-{}^{1}A')$ 650 $\leq \lambda/nm \leq 770$	[280]
DNO $(\tilde{X}^{1}A')$	AIC	$({}^{1}A''-{}^{1}A')$ (1,0,0)-(0,0,0) $K' = 4-K'' = 3$, $\varepsilon = 201/\text{mol cm flashl. rhodamine B-dye-laser}$	[279]
	LIF	$\tilde{A}^{1}A''(0,1,0) - \tilde{X}^{1}A'(0,0,0) \lambda = 740 \text{ nm}$ (0,0,1)-(0,0,0) $\lambda = 710 \text{ nm}$ (0,1,1)-(0,0,0) $\lambda = 640 \text{ nm}$ (0,1,1)-(0,0,0) $\lambda = 640 \text{ nm}$	[213]
	Ε	Oxazin 720, Rhodamine 640 dye hashilaser (HNO ($^{1}A''$)) from: O(^{3}P)/O ₂ + NO + C ₂ H ₂ , C ₂ H ₄ , C ₃ H ₆ , CH ₂ O, CH ₃ CHO	[281]
	MS	DNO ($^{1}A''$) from: O (^{3}P)/O ₂ + NO + C ₂ D ₄ (electron impact ionization) (DNO ⁺)	Г 3 Л
$P(^{4}S)$	RA	$3n^24s(^4P_{-1}, \dots, -)=3n^3(^4S_{-1})\lambda/nm = 177.5$	L ⁹ J F1167
$I (5_{3/2})$	КA	$178 \cdot 29$; 178 $\cdot 77$, measured at: $\lambda = 177 \cdot 5$ nm	LIIOJ
	RF	$3p^24s$ (⁴ P _{1/2,3/2,5/2}) $-3p^3$ (⁴ S _{3/2}) $\lambda/nm = 178.77; 178.29$ and 177.50	[112]
	ESR MS	$({}^{4}S_{3/2})$ X-band (analogous ${}^{15}N$) (electron impact ionization) (P ⁺) (P ²⁺)	[5] [3]
PH $(\tilde{X} {}^{3}\Sigma^{-})$ $(a {}^{1}\Delta)$	A–UV	$A^{3}\Pi - X^{3}\Sigma 318 \leq \lambda/nm \leq 360$ $\lambda (0,0) nm = 342.68 (P_{1})$	[336]
	LMR	$(^{3}\Sigma^{-})$ J=4-5, λ =118.6 μ m	[109,111]
	LMR	$(a^{1}\Delta), J = 4-5, \lambda = 118.6 \mu\text{m}$ H ₂ O-discharge-laser	[109, 111]
PD ($X^{3}\Sigma^{-}$)	LMR	$(X^{3}\Sigma^{-}) v = 1-0 (N', N'' = 3)$ $\lambda/\mu m = 5.95-6.15$ CO-laser	[110]
$PF(X^{3}\Sigma^{-})$	A–UV	$(B^{3}\Pi - X^{3}\Sigma^{-}) \ 300 \le \lambda/nm \le 400 (b^{1}\Sigma^{+} - X^{3}\Sigma^{-}) \ 744.4 \le \lambda/nm \le 748.3$	[336]
	Ε	$\lambda (0,0) = 748.308 \text{ nm} (b^{1}\Sigma^{+}-X^{3}\Sigma^{-}) \lambda (0,0) = 748 \text{ nm} NF(^{1}\Sigma^{+}) \text{ from: } Ar(^{3}P_{0,2}) + NF(^{3}\Sigma)$	[124]
PCl ($X^{3}\Sigma$)	A-UV	$B-X$, $230 \leq \lambda/nm \leq 248.8$	
		$C-X$, 224·3 $\leq \lambda/\text{nm} \leq 233\cdot6$ λ (0,0) = 230·7 nm PCl from PCl ₃ -photolysis	[273]
$PH_2(\tilde{X}^2B_1)$ $PD_2(\tilde{X}^2B_1)$	A-VIS	PH ₂ $\tilde{A}^2 A_1 (0, v'_2, 0) - \tilde{X}^2 B_1 - (0, 0, 0)$ $1 \le v'_2 \le 8 (0, 0, 0) - (0, 0, 0) \lambda = 547.1 \text{ nm}$	[365]
2 1/	A–VIS LIF	$ PD_{2}(\tilde{A}^{2}A_{1} - \tilde{X}^{2}B_{1})(v_{2} - 0) \ 1 \le v_{2} \le 10 \\ (\tilde{A}^{2}A_{1} - \tilde{X}^{2}B_{1})(0, v_{2}, 0) - (0, 0, 0), \ 0 \le v_{2} \le 5, \\ A36 \le 1 (nm \le 551) \ dve^{(N-1)} \ d$	[130] [104, 107]
	LMR	$(\tilde{X}^{2}B_{1})(v_{2}) 9.0 \leq \lambda/\mu m \leq 9.6 \text{ CO}_{2}\text{-laser}$ $(\tilde{X}^{2}B_{1})(v_{2}) 9.0 \leq \lambda/\mu m \leq 9.6 \text{ CO}_{2}\text{-laser}$ $(\tilde{X}^{2}B_{1})(0,0,0)(6_{43}-5_{32}) \text{ rottransition}$	[105, 106]
	MS	(electron impact ionization) (PH_2^+)	[3]

Atom, radical	Method	Explanations	References
$\overline{\mathrm{PF}_{2}\left(\tilde{X}^{2}B_{1}\right)}$			
PO $(X^2 \Pi_{1/2, 3/2})$	LIF	$(B^2\Sigma^+ - X^2\Pi_{1/2})$ (0, 0), $\lambda = 325$ nm, cresylviolet-dve/Nd-YAG laser (doubled)	[271]
	MPI	laser induced two photon ionization with as resonant intermediate state $B(^{2}\Sigma^{+})$ $302 \le \lambda/\text{nm} \le 334$, sensitivity: $x_{\text{PO}} \ge 10^{-8} \text{ C}_2\text{H}_2$ -air-flame	[272]
As (⁴ S _{3/2})	RA RF	As $4p^3({}^4S_{3/2})-5s({}^4P_{5/2})-4p^3({}^4S_{3/2}) \lambda = 189.0 \text{ nm}$ $4p^2 5s({}^4P_{5/2,3/2,1/2})-4p^3({}^4S_{3/2}),$ $\lambda/nm = 189.04 193.76 \text{ and } 197.23$	[117] [113]
	ESR	$({}^{4}S_{3/2})$ (X-band)	[5]
AsO $(X^2 \Pi_{3/2})$	Ε	$A^{2}\Sigma^{+} - X^{2}\Pi (0 \le v \le 5), 295 \le \lambda/nm \le 345$ (G^{2}\Pi - X^{2}\Pi, H^{2}\Pi - X^{2}\Pi, D^{2}\Sigma^{-} - X^{2}\Pi C^{2}\Lambda - X^{2}\Pi)	[268]
	LMR	$X^{2}\Pi_{3/2}(v = 1 \leftarrow 0), \lambda = 10.45 \mu\text{m},$ CO ₂ , 10 P (14) laser-line	[267]
AsS $(X^2\Pi)$	MS	(electron impact ionization) (As S ⁺)	[388]
Sb, Bi (⁴ S _{3/2})	RA	Sb(6(${}^{4}P_{1/2}$)-5(${}^{4}S_{3/2}$)) $\lambda = 231 \cdot 3 \text{ nm}$ Bi(7(${}^{4}P_{1/2}$)-6(${}^{4}S_{3/2}$)) $\lambda = 306 \cdot 77 \text{ nm}$	[118, 119]
	RF	Sb($6({}^{4}P_{1/2})-5({}^{4}S_{3/2})) \lambda = 231 \cdot 3 \text{ nm}$ Bi($7({}^{4}P_{1/2})-6({}^{4}S_{3/2})) \lambda = 306 \cdot 77 \text{ nm}$	[114, 115]
	ESR	$\binom{1^{21}\text{Sb}}{(1^{23}\text{Sb})} \binom{4^{2}\text{S}_{3/2}}{I=5/2}$ $\binom{1^{23}\text{Sb}}{(4^{2}\text{S}_{3/2})} I=7/2$ (X-band)	[5]
S $({}^{3}P_{2}), ({}^{1}D_{2})$	A-UV	$(S^{3}P_{2}) (4s({}^{3}\tilde{S}_{1})-3p^{4}(3P_{2})) \lambda = 180.73 \text{ nm}$ (strong absorption) $S({}^{1}D_{2})$ (from OCS 200–260 nm) $(3p^{3}4s({}^{1}D_{2})-3p^{4}({}^{1}D_{2})))$ $\lambda = 166.67 \text{ nm} (\text{H}_{2}\text{S}/\text{He discharge-lamps})$ sensitivity: $[S(3{}^{1}D_{2})] \ge 3 \times 10^{-14} \text{ mol/cm}^{3}$ S/N = 1	[282, 283, 284]
	RF	$({}^{3}P_{J})$ (4s ${}^{3}S_{1}-3p^{4}$ ${}^{3}P_{J})$ $\lambda = 181 \text{ nm (non-resolved triplet)}$	[285]
	ESR MS	$({}^{3}P_{1,2})$ X-band (analogous O $({}^{3}P_{1,2})$) (electron impact ionization) (S ⁺)	[5] [3]
$S_2 \left({}^3\Sigma_g^- ight)$	A-UV-VIS	$B^{3}\Sigma_{u}^{-} - X^{3}\Sigma_{g}^{-} 240 \leq \lambda/\text{nm} \leq 711, \ \lambda_{0,0} = 315 \cdot 5 \text{ nm}$ $C^{3}\Sigma_{u}^{-} - X^{3}\Sigma_{g}^{-} 165 \leq \lambda/\text{nm} \leq 187, \ \lambda_{0,0} = 179 \cdot 6 \text{ nm}$ $D^{3}\Sigma_{-} Y^{3}\Sigma_{-} 165 \leq \lambda/\text{nm} \leq 175 \ \lambda_{-} = 170 \text{ nm}$	[335]
	LIF	$ \begin{array}{l} B \ \Sigma_{u} - X \ \Sigma_{g} \ 105 \ll \lambda/1111 \ll 115 \ \lambda_{0,0} = 170 \ \text{mm} \\ (B \ 3\Sigma_{u} - X \ 3\Sigma_{g} \) \ (v' = 3, \ N' = 24, \ J' = 25) - (v'' = 3, \ N'' = 25, \ J'' = 26) \ \lambda = 325 \ \text{nm} \ \text{c.wHe-Cd-laser} \\ (B \ 3\Sigma_{u} - X \ 3\Sigma_{u} \) \ \lambda = 337 \ \text{nm} \ \text{N_{a-laser}} \end{aligned} $	[287]
	ESR	$^{32}S_{2,}^{34}S$ (^{32}S natural abundance) ($X^{3}\Sigma_{g}^{-}$) X-band (9 GHz) magnetic dipole transitions	[286]
	MS	photoionization (S_2^+)	[3]
SH, SD (<i>X</i> ² Π _i)	A–UV	SH, SD, $(A^{2}\Sigma^{+}-X^{2}\Pi_{i})(0,0)(1,0)$ $245 \le \lambda/nm \le 330$ SH $^{2}\Pi_{1/2}(0,0)$ band head $\lambda(R_{2}) = 232.66$ nm, $\lambda(Q_{2}) = 327.93$ nm	[289]
	LIF	$({}^{2}\Sigma^{+}-{}^{2}\Pi_{3/2,1/2}), 323.6 \le \lambda/nm \le 325.7$ flashl. dve-laser (doubled) $320 \le \lambda/nm \le 334$	[127, 128]
	Ε	$A^{2}\Sigma^{+}$ from (SOCl ₂ , CHCl ₃ , CDCl ₃) K-vapour-low pressure diffusion flame $A^{2}\Sigma^{+}-X^{2}\Pi$ SH (0,0) and SD (0,0) (0,1) respectively.	[290]

186

W. Hack

Atom, radical	Method	Explanations	References
	LMR	(SD, $X^2\Pi_{3/2}$, $v=1 \leftarrow 0$) $\lambda/\mu m = 5\cdot303$; $5\cdot373$ CO-laser sensitivity: [SD] $\ge 3 \times 10^{-15}$ mol/cm ³ ³² SH, ³⁴ SH ² Π, $J=3/2 \rightarrow 5/2$, ³² SD ² Π $J=5/2 \rightarrow 7/2$	[129, 291]
	ESR	$\lambda/\mu m = 210.295 (CH_3OD)/CO_2-r1R-laser$ ^{32, 33} SH (SD) ${}^{2}\Pi_{3/2}$ (X-band) electric dipole transitions (OH analogous)	[5, 367, 368]
	MS	electron impact ionization (SH ⁺)	[3,4]
SF $(X^2 \Pi_{3/2})$	ESR	${}^{2}\Pi_{3/2} J = 3/2$ (X-band) electric dipole transitions	[5]
	MS	electron impact ionization (SF ⁺)	[3, 79]
$\mathrm{SF}_2(\widetilde{X})$	MS	electron impact ionization (SF_2^+)	[3, 79]
SO $(X^{3}\Sigma^{-})$ $(a^{1}\Delta)$	A–UV	$B^{3}\Sigma^{-} - X^{3}\Sigma^{-} 190 \leq \lambda/nm \leq 457$ $A^{3}\Pi - X^{3}\Sigma^{-} 240 \leq \lambda/nm \leq 263$	[336] [295]
	LIF	$(A^{3}\Pi - X^{3}\Sigma) \ 0 \le v' \le 6,\ 246 \le \lambda/\text{nm} \le 262$ Dve (doubled)/Nd-YAG (tripled)	[297]
	ChL	SO $({}^{1}\Delta_{g}, {}^{1}\Sigma_{g}^{+})$ SO $({}^{1}\Delta_{g}, {}^{1}\Sigma_{g}^{+})$ SO $({}^{1}\Delta^{-3}\Sigma^{-}) \lambda (0, 0) = 1.705 \mu\text{m}$ SO $({}^{1}\Delta)$ form one on the second sec	[298]
	LMR	$(X^{3}\Sigma^{-}v=1\leftarrow 0) N=-1, \Delta J=0$ $\lambda = 9.09 \ \mu m CO_{2} -1aser$	[300]
	ESR	$(^{3}\Sigma^{-})$ X-band, electric dipole transitions $(0 \le v \le 6)$ 34 SO, 33 SO 32,33 SO $(^{1}\Lambda)$ X-band electric dipole transitions	[5, 299]
	MS	(electron impact- and photoionization) (SO ⁺)	[3, 294, 296]
HSO $(\tilde{X}^2 A'')$ DSO $(\tilde{X}^2 A'')$	LIF	$(\tilde{A}^2 A' - \tilde{X}^2 A'') (0, 0, 3) - (0, 0, 0)$ (0, 0, 4) - (0, 0, 0) 570 $\leq \lambda/\text{nm} \leq 620$ rhodamine 6G, kiton-red S	[305, 306]
	ChL	$(\tilde{A}^2 A')$ from: SH (SD)+O ₃ \rightarrow HSO (DSO) $(\tilde{A}^2 A')$ +O ₂ $570 \leq \lambda/nm \leq 700$	[304, 305]
SN ($X^2\Pi$)	A–UV	$A-X^2\Pi$ at $\lambda = 250$ nm $C^2\Sigma - X^2\Pi$ at $\lambda = 230$ nm (strong absorption)	[317] [314]
Se, Te $({}^{3}P_{J})$	RA	Se $(4^{3}P_{0}) 5^{3}S_{1} - 4^{3}P_{0} \lambda = 206.3 \text{ nm}$ Te $(5^{3}P_{1}) (5^{3}P_{0}) 210 \leq \lambda/\text{nm} \leq 240$	[373] [372]
	ESR	Se $({}^{3}P_{1}, {}^{3}P_{2})$ X-band $(O{}^{3}P_{J})$ analogues 77 Se $I = 1/2$ Te $({}^{3}P_{2})$ observed	[5]
	MS	Knudsen cell electron impact ionization (Se ⁺)	[370]
$\operatorname{Se}_2(X^{3}\Sigma^{-})$	A LIF	$B^{3}\Sigma_{u}^{-} - X^{3}\Sigma_{g}^{-} 325 \leq \lambda/nm \leq 670$ $B^{3}\Sigma_{u}^{-} - X^{3}\Sigma_{g}^{-} \lambda/nm = 514.5; 351.1$	[335] [288]
	MS	Ar-laser; 413.1 nm Kr-laser (and dye-laser) Knudsen cell electron impact- and photoionization (Se ⁺ ₂)	[3, 370]
SeH, SeD (² Π _{3/2})	A–UV LMR	SeH, SeD, $300 \le \lambda/\text{nm} \le 325$ $76, 77, 78, 80, 8^2\text{SeH} (^2\Pi_{3/2}) J = 5/2-7/2$ $\lambda = 194 \mu\text{m CD}_3\text{OD/CO}_2\text{-laser} (^2\Pi_{1/2} - ^2\Pi_{3/2})$ $J = 3/2 - 3/2, M_J = 3/2 - 3/2 \lambda = 5.62 \mu\text{m CO-laser}$ $74, 76, 77, 78, 80, 8^2\text{SeD} X ^2\Pi_{3/2} J = 3/2 - 5/2$	[293] [292]
	ESR	SeH (SeD) ${}^{2}\Pi_{3/2}$ (X-band)	[5]
SeF $(X^2 \Pi_{2/2})$	ESR	$({}^{2}\Pi_{3/2})$ (X-band) analogous SF ${}^{2}\Pi_{3/2}$	[5]

Atom, radical	Method	Explanations	References
$(a^{1}\Delta)$	LMR ESR	^{76,77,78,80,82} SeO $(X^{3}\Sigma^{-})$ $(v=1 \leftarrow 0)$ $\lambda = 10 \mu\text{m} P(6) - P(12) ({}^{13}\text{C} {}^{16}\text{O}_{2}\text{-laser line})$ $({}^{3}\Sigma) (X\text{-hand})$ analogous SO $({}^{3}\Sigma)$	[301]
SeS $(X^{3}\Sigma^{-})$	LIF	(2) (X sum) analysis $5 \le (2)$ $(7^{8,80}\text{Se}^{32}\text{S})$ ($B-X$) ($0 \le v \le 4$) ($1 \le v' \le 14$) $350.9 \le 1/\text{nm} \le 476.6 \text{ Ar}^+ \text{ Kr}^{2+}\text{-laser}$	[303]
	MS	Knudsen cell electron impact ionization (SeS ⁺)	[371]
SeN $(^{2}\Pi_{3/2})$	LMR	$(^{2}\Pi_{3/2}) v = 1 \leftarrow 0 \operatorname{CO}_{2}$ -laser	[374]
TeH $(X^2 \Pi_{3/2})$	ESR	$^{2}\Pi_{3/2}, J = 3/2 X$ -band	[5]
TeO $(X^{3}\Sigma)$	MS	(electron impact ionization) (TeO ⁺)	[3]
BH (X ² Σ ⁺)	A–UV–VIS E	$(A^{1}\Pi - X^{1}\Sigma^{+}) \begin{array}{l} 394.5 \leq \lambda/nm \leq 460 \\ \lambda (0,0) = 433.3 \text{ nm} \\ (B^{1}\Sigma^{+} - X^{1}\Sigma^{+}) \begin{array}{l} 182.6 \leq \lambda/nm \leq 192.6 \\ \lambda (0,0) = 190.99 \text{ nm} \end{array}$	[336]
	LIF	(further transitions at shorter wavelengths) $(A^{1}\Pi, v'=0, J'=1, 4, 7)$ $430 \leq \lambda/nm \leq 437$ dye/N ₂ -laser	[307]
	MS	(electron impact ionization) (BH ⁺)	[3]
$BH_2 (\tilde{X}^2 \Pi_u)$	MS	(electron impact ionization) (BH_2^+)	[3]
BO $(X^2\Sigma^+)$	Ε	$(A^{2}\Pi - X^{2}\Sigma^{+}) 310 \leq \lambda/nm \leq 850$ $\lambda (0,0) = 425 \cdot 0 \text{ nm}$ $(B^{2}\Sigma^{+} - X^{2}\Sigma^{+}) 210 \leq \lambda/nm \leq 370,$ $\lambda (0,0) = 233 \cdot 1 \text{ nm}$ $(C^{2}\Pi - X^{2}\Sigma^{+}) 163 \leq \lambda/nm \leq 204,$ $\lambda (0,0) = 181 \cdot 5 \text{ nm}$	[336]
	LIF	$(A^2\Pi - X^2\Sigma^+) 11 \geqslant v' \ge 0$ 277 \le \lambda/nm \le 425 dye/YAG-laser	[308, 309]
	MS	(electron impact ionization) (BO ⁺)	[3]
BN $(X {}^{3}\Pi)$	Ε	$(A^{3}\Pi - X^{3}\Pi) 340 \le \lambda/nm \le 385 \\ \lambda (0,0) = 359.9 \text{ nm}$	[336]
$\mathrm{BO}_2(\tilde{X}^2\Pi_{\mathbf{g}})$	LIF	$(\tilde{\lambda}^2 \Pi_u (0, 0, 2) - \tilde{\lambda}^2 \Pi_g) \lambda = 434 \text{ nm}$ dye/YAG-laser; c.wdye-laser, ion-laser	[308, 375]
$\operatorname{Cd}({}^{3}P_{J})$	LIF	Cd $({}^{1}P_{1}-{}^{3}P_{J}) \lambda = 228 \cdot 8 \text{ nm}$ dye/N ₂ -laser (doubled)	[322]
	MS	(electron impact ionization) (Cd ⁺)	[3]
Hg $(6({}^{1}S_{0})))$ $(6({}^{3}P_{0,1,2}))$	RA LIF LMR MS	$6({}^{3}P_{1})-6({}^{1}S_{0}) \lambda = 253.7 \text{ nm} ({}^{3}P_{0}-7({}^{3}S_{1})) \lambda_{L} = 404.7 \text{ nm}, \lambda_{F} = 546.1 \text{ nm} 6s 6p ({}^{3}P_{1}-{}^{3}P_{0}) \lambda = 5.658 \mu\text{m CO-laser} (electron impact- and photoionization) (Hg^{+}, Hg^{2+6+})$	[318, 321] [320] [319] [3]
$\mathrm{UF}_{5}\left(\widetilde{X} ight)$	A-UV-VIS	$(UF_5) 350 \leq \lambda/nm \leq 700$ $\varepsilon (400 nm) = 600 l/mol cm$	[126]
	AJR LIF	diode laser 16–17 μ m (UF ₅) 17 emission lines 682·7 $\leq \lambda/nm \leq 877$ after KrF-laser photolysis	[323] [324]

Abbreviation used in tables 1 and 2

- A absorption
- ICA intracavity absorption
- RA resonance absorption
- LRA laser resonance absorption
 - RF resonance fluorescence

- LIF laser induced fluorescence
- LISF laser induced saturation fluorescence
- TALIF two photon-absorption laser induced fluorescence
 - LMR laser magnetic resonance
 - LER laser electric resonance
 - LOG laser-optogalvanic absorption
 - ESR electron spin resonance
 - DL diode laser
 - MW microwave absorption
 - E emission
 - ChL chemiluminescence
 - MS mass spectrometer
 - MPI multiphoton ionization
 - PES photoelectron spectroscopy
 - SI surface ionization (Langmuir-Taylor detector)
 - CCL colour centre laser
- CARS coherent anti-Stokes Raman scattering

Indirect detection methods (e.g. probes taken from the gas phase and frozen in a low-temperature matrix (e.g. (327)) are not included in tables 1 and 2.

References

References for the text

- [1] PANETH, E., and HOFEDITZ, W., 1929, Ber. dt. chem. Ges. B., 62, 1335.
- [2] JOST, W., (Ed.) and WOLFRUM, J., 1975, Advanced Treatise on Physical Chemistry, (b), 6, 629.
- [3] WAGNER, H. GG., and WOLFRUM, J., 1971, Angew. Chem., 83, 561.
- [4] DONOVAN, R. J., HUSAIN, D., and KIRSCH, L. J., 1972, Annual Report, Chemical Society of London A, p. 19.
- [5] DONOVAN, R. J., 1979, Prog. Reaction Kinet., 10, 253.
- [6] JONES, W. E., MACKNIGHT, S. D., and TENG, L., 1973, Chem. Rev., 73, 407.
- [7] THRUSH, B. A., 1965, Prog. Reaction Kinet., 3, 64.
- [8] HERRON, J. T., and HUIE, R. E., 1973, J. phys. Chem. Ref. Data, 2, 247; HERRON, J. T., and HUIE, R. E., 1975, Prog. Reaction Kinet., 8, 1.
- [9] KAUFMAN, F., 1961, Prog. Reaction Kinet., 1, 1.
- [10] FOON, R., and KAUFMAN, M., 1975, Prog. Reaction Kinet., 3, 81.
- [11] FETTIS, G. G., and KNOX, J. H., 1964, Prog. Reaction Kinet., 2, 1; LLOYD, A. C., 1971, Int. J. chem. Kinet., 3, 39.
- [12] BROCKLEHURST, B., and JENNINGS, K. R., 1966, Prog. Reaction Kinetics, 4.
- [13] DRYSDALE, D. D., and LLOYD, A. C., 1970, Oxidation Combustion Rev., 4, 157.
- [14] WILSON, W. E., JR. 1972, J. phys. Chem. Ref. Data, 1, 535.
- [15] ATKINSON, R., DARNALL, K. R., LLOYD, A. C., WINTER, A. M., and PITTS, J. N., 1979, Adv. Photochem., 11, 375.
- [16] BAULCH, D. L., and CAMPBELL, I. M., 1980, Gas Kinetics Energy Transfer, 4, 137.
- [17] LLOYD, A., 1974, Int. J. chem. Kinet., 6, 169.
- [18] KERR, J. A., and PARSONAGE, M. J., 1976, Evaluated Kinetic Data on Gas Phase Hydrogen Transfer Reactions of Methyl Radicals (London: Butterworths).
- [19] KAUFMAN, F., 1979, A. Rev. phys. Chem., 30, 411.
- [20] WARNATZ, J., 1982, Chemical Kinetics of Combustion Reactions, edited by W. C. Gardiner (Springer).
- [21] HOYERMANN, K., and WAGNER, H. GG., 1982, Oxidation Commun., 2, 259; DODGE, L. G., 1977, Prog. Astronautics Aeronautics, 53, 155.
- [22] KAUFMAN, F., 1969, A. Rev. phys. Chem., 20, 45.
- [23] SPICER, L. D., and RABINOVICH, B. S., 1970, A. Rev. phys. Chem., 21, 349.

- [24] TROE, J., and WAGNER, H. GG., 1972, A. Rev. phys. Chem., 23, 311.
- [25] WESTENBERG, A. A., 1973, A. Rev. phys. Chem., 24, 77.
- [26] WESTENBERG, A. A., 1973, Prog. Reaction Kinetics, 7, 23.
- [27] DAVIES, P. B., 1981, J. phys. Chem., 85, 2599; EVENSON, K. M., SAYKALLY, R. J., JENNINGS,
 D. A., CURL, R. F., JR. and BROWN, J. M., (C. B. MOORE (Ed.)), 1980, Chem. biochem. Appl. Lasers, 5, 95.
- [28] FONER, S. N., 1966, Adv. atom. molec. Phys., 2, 385; HERRON, J. T., 1971, Adv. Mass. Spectros., 5, 453; ROSENSTOCK, H. M., DRAXE, K., STEINER, B. W., and HERRON, J. T., 1977, J. phys. Chem. Ref. Data, 6, 1.
- [29] SETSER, D. W., (Ed.), LIN, M. E., and MCDONALD, J. R., 1979, Reactive Intermediates in the Gas Phase (New York: Academic Press), p. 233 ff.; REISLER, H., MANGIR, M., and WITTIG, C., (Ed. C. B. Moore), 1980, Chem. biochem. Appl. Lasers, 5, 139; LETOKOV, V. S., (Ed. C. B. Moore), 1980, Chem. biochem. Appl. Lasers, 5, 1; WALTHER, H., (H. Walther Ed.), 1976, Topics Appl. Phys., 2, (Berlin: Springer).
- [30] LEVITT, B. P., (Ed.) and CLYNE, M. A. A., 1973, Phys. Chem. Fast Reactions, Vol. 1, (London: Plenum Press), p. 247 ff.; SETSER, D. W., (Ed.), CLYNE, M. A. A., and NIP, W. S., 1979, Reactive Intermediates in the Gas Phase (New York: Academic Press), p. 1 ff.
- [31] BOESL, U., NEUSSER, H. J., and SCHLAG, E. W., 1978, Z. Naturf. (a), 33, 1546; BOESL, U., NEUSSER, H. J., and SCHLAG, E. W., 1980, J. chem. Phys., 72, 4327; BOESL, U., NEUSSER, H. J., and SCHLAG, E. W., 1982, Chem. Phys. Lett., 87, 1.
- [32] DIETZ, W., NEUSSER, H. J., BOESL, U., SCHLAG, E. W., and LIN, S. H., 1982, Chem. Phys., 66, 105.
- [33] ANTONOV, S., LETOKHOV, V. S., and SHIBANOV, A. N., 1978, Optics Lett., 3, 37; ANTONOV, S., LETOKHOV, V. S., and SHIBANOV, A. N., 1980, Appl. Phys., 22, 293.
- [34] ZANDEE, L., and BERNSTEIN, R. B., 1979, J. chem. Phys., 70, 2574; ZANDEE, L., and BERNSTEIN, R. B., 1979, J. chem. Phys., 71, 1359.
- [35] LUBMAN, D. M., NAAMAN, R., and ZARE, R. N., 1980, J. chem. Phys., 72, 3034.
- [36] SCHULTZ, A., CRUSE, H. W., and ZARE, R. N., 1972, J. chem. Phys., 57, 1354.
- [37] SILVER, J. A., DIMPF, W. L., BROPHY, J. H., and KINSEY, J., 1976, J. chem. Phys., 65, 1811.
- [38] KOWALIK, R. M., and KRUGER, C. H., 1979, Combust. Flame, 34, 135.
- [39] ANLAUF, K. G., KUNTZ, P. J., MAYLOTTE, D. H., PACEY, P. O., and POLANYI, J. C., 1967, Discuss. Faraday Soc., 44, 183; ANLAUF, K. G., POLANYI, J. C., WONG, W. H., and WOODALL, K. B., 1968, J. chem. Phys., 49, 5189; POLANYI, J. C., and TARDY, D. C., 1969, J. chem. Phys., 51, 5719.
- [40] JOHNSON, R. L., PERONA, M. J., and SETSER, D. W., 1970, J. chem. Phys., 52, 6372.
- [41] EVENSON, K. M., BROIDA, H. P., WELLS, J. S., MAHLER, R. J., and MIZUSHIMA, M., 1968, Phys. Rev. Lett., 21, 1038.
- [42] EVENSON, K. M., RADFORD, H. E., and MORAN, J. M., 1971, Appl. Phys. Lett., 18, 426.
- [43] BROWN, J. M., KERR, C. M. L., WAYNE, F. D., EVENSON, K. M., and RADFORD, H. E., 1981, J. molec. Spectrosc., 86, 544.
- [44] PETERSON, N. C., KORYLO, M. J., BRAUN, W., BASS, A. M., and KELLER, R. A., 1971, J. opt. Soc. Am., 61, 746.
- [45] ATKINSON, G. H., LAUFER, A. H., and KURYLO, M. J., 1973, J. chem. Phys., 59, 350.
- [46] NIKI, H., MAKER, P. D., SAVAGE, C. M., and BREITENBACH, L. P., 1981, J. phys. Chem., 85, 877.
- [47] MAKER, P. D., NIKI, H., SAVAGE, C. M., and BREITENBACH, L. P., 1979, Am. chem. Soc. Symp., Ser. 94, 163.
- [48] NIKI, H., MAKER, P. D., SAVAGE, C. M., and BREITENBACH, L. P., 1980, J. molec. Struct., 59, 1.
- [49] BARNES, I., BASTIAN, V., BECKER, K. H., FINK, E., and ZABEL, F., 1982, Atmos. Environments, 16, 545.
- [50] BARNES, I., BASTIAN, V., BECKER, K. H., FINK, E., and ZABEL, F., 1981, Chem. Phys. Lett., 83, 459.
- [51] FAIRBANK, W. M. Jr., HÄNSCH, T. W., and SCHAWLOW, A. L., 1975, J. opt. Soc. Am., 65, 199.
- [52] PIEPMEIER, E. H., 1972, Spectrochim. Acta, B, 27, 431.
- [53] ECKBRETH, A. C., BOUCZYK, P. A., and SHIRLEY, J. A., 1978, EPA Report No. 600, 7-78-104.
- [54] BARONAWSKI, A. P., and MCDONALD, J. R., 1977, J. chem. Phys., 66, 3300; BARONAWSKI,
 A. P., and MCDONALD, J. R., 1977, Appl. Opt. 16, 1897.

- [55] OMENETTO, N., and WINEFORDER, J. D., 1979, Prog. Analyt. Atom. Spectrosc., 2, 1.
- [56] REGNIER, P. R., and TARAN, J. P. E., 1973, Appl. Phys. Lett., 23, 240.
- [57] MOYA, F., DRUET, S. A. J., and TARAN, J. P. E., 1975, Optics Communication, 13, 169.
- [58] HETHERINGTON, W. M., III, KORENNOWSKI, G. M., and EISENTHAL, K. B., 1981, Chem. Phys. Lett., 77, 275.
- [59] GROSS, K. P., GUTHALS, D. M., and NIBLER, J. W., 1979, J. chem. Phys., 70, 4673.
- [60] DRUET, S., and TARAN, J. P. E., 1979, Chem. Biochem. Appl. Lasers, 4, 187.
- [61] ECKBRETH, A. C., BONCZYK, P. A., and VERDIECK, J. F., 1977, Appl. Spectrosc. Rev., 13, 15.
- [62] RAHN, L. A., MATTERN, P. L., and FARROW, R. L., 1981, 18th Symposium (International) on Combustion, (Combust Institute), p. 1533.
- [63] DREIER, TH., and WOLFRUM, J., personal communication.
- [64] TALROSE, V. L., 1980, Adv. Mass Spectrom., Volume 8, (London: Heyden & Son), pp. 147 f.
- [65] TALROSE, V. L., BUTKAVSKAYA, N. I., LARICHEV, M. N., LEIPUNSKII, I. O., MOROZOV, I. I., DODONOV, A. F., KUDROV, B. V., ZELENOV, V. V., and RAZNIKOV, V. V., 1978, Advances in Mass Spectrom., Volume 7, (London: Heyden and Son), pp. 693 f.
- [66] GOLDSMITH, J. E. M., 1983, J. chem. Phys., 78, 1610.
- [67] LUCHT, R. P., SWEENEY, D. W., and LAURENDEAU, N. M., 1983, Combust. Flame, 50, 189.
- [68] DASCH, C. F., and BECHTEL, J. H., 1981, Optics Lett., 6, 36.
- [69] BISCHEL, W. K., PERRY, B. E., and CROSBY, D. R., 1981, Chem. Phys. Lett., 82, 85.
- [70] TEETS, R. E., and BECHTEL, J. H., 1981, Optics Lett., 6, 458.

References for the tables

- [1] HERZBERG, G., 1932, Naturwissenschaften, 20, 577.
- [2] EVENSON, K. M., BROIDA, H. P., WELLS, J. S., MAHLER, R. J., and MIZUSHIMA, M., 1968, *Phys. Rev. Lett.*, **21**, 103; EVENSON, K. M., and MIZUSHIMA, M., 1972, *Phys. Rev.*, A, **6**, 2197.
- [3] ROSENSTOCK, H. M., DRAXL, K., STEINER, B. W., and HERRON, J. T., 1977, J. phys. Chem. Ref. Data, 6, 1.
- [4] FONER, S. N., 1966, (and references given there), Adv. Atom. molec. Phys., 2, 385.
- [5] WESTENBERG, A. A., 1973, (and references given there), Prog. Reaction Kinetics, 7, 23.
- [6] HERRON, J. T., 1971, (and references given there), Adv. Mass. Spectrom., 5, 453.
- [7] KRONGELL, S., and STRANDBERG, M. W. P., 1959, J. chem. Phys., 31, 1196.
- [8] RADFORD, H. E., 1961, Phys. Rev., 122, 114; 1962, Ibid; 126, 1035.
- [9] EVENSON, K. M., WELLS, J. S., and RADFORD, H. E., 1970, Phys. Rev. Lett., 25, 199.
- [10] EVENSON, K. M., RADFORD, H. E., and MORAN, J. M., 1971, Appl. Phys. Lett., 18, 426.
- [11] KASUYA, T., and SHIMODA, K., 1972, Jap. J. appl. Phys., 11, 1571.
- [12] DAVIES, P. B., HACK, W., PREUSS, A. W., and TEMPS, F., 1979, Chem. Phys. Lett., 64, 94;
 DAVIES, P. B., HACK, W., and WAGNER, H. GG., 1981, Faraday Discuss. R. Soc., 71, 15.
- [13] LEE, K. P., and TAM, W. G., 1974, Chem. Phys., 4, 434.
- [14] RASHID, M. H., LEE, K. P., and SASTRY, K. V. L. N., 1977, J. molec. Spectrosc., 68, 299.
- [15] GEIGER, J. S., SMITH, D. R., and BONNETT, J. D., 1980, Chem. Phys. Lett., 70, 600.
- [16] BROWN, J. M., KERR, C. M. L., WAYNE, F. D., EVENSON, K. M., and RADFORD, H. E., 1981, J. molec. Spectrosc., 86, 544.
- [17] BARNES, C. E., BROWN, J. M., and RADFORD, H. E., 1980, J. molec. Spectrosc., 84, 179.
- [18] MCKELLAR, A. R. W., 1979, J. chem. Phys., 71, 81.
- [19] HOUGEN, J. T., RADFORD, H. E., EVENSON, K. M., and HOWARD, C. J., 1975, J. molec. Spectrosc., 56, 210.
- [20] RADFORD, H. E., EVENSON, K. M., and HOWARD, C. J., 1974, J. chem. Phys., 60, 3178.
- [21] BARNES, C. E., BROWN, J. M., CARRINGTON, A., PINKSTONE, J., SEARS, T. J., and THISTLETHWAITE, P. J., 1978, J. molec. Spectrosc., 72, 86.
- [22] JOHNS, J. W. C., MCKELLAR, A. R. W., and RIGGIN, M., 1978, J. chem. Phys., 68, 3957.
- [23] DAVIES, P. B., HANDY, B. J., LLOYD, E. K. M., and SMITH, D. R., 1978, J. chem. Phys., 68, 1135.
- [24] SAYKALLY, R. J., and EVENSON, K. M., 1979, J. chem. Phys., 71, 1564.
- [25] DAGENAIS, M., JOHNS, J. W. C., and MCKELLAR, A. R. W., 1976, Can. J. Phys., 54, 1438.
- [26] MYERSON, A. L., and WATT, W. S., 1968, J. chem. Phys., 49, 425.

- [27] AHUMADA, J. J., MICHAEL, J. V., and OSBORNE, D. T., 1972, J. chem. Phys., 57, 3736.
- [28] BEMAND, P. B., and CLYNE, M. A. A., 1977, J. chem. Soc. Faraday Trans., II, 73, 394.
- [29] KLEMM, R. B., and STIEF, L. J., 1974, J. chem. Phys., 61, 4900.
- [30] HUSAIN, D., and SLATER, N. K. H., 1980, J. chem. Soc. Faraday Trans., II, 76, 276.
- [31] OKA, K., SINGLETON, D. L., and CVETANOVIĆ, R. J., 1977, J. chem. Phys., 66, 713; OKA, K., SINGLETON, D. L., and CVETANOVIĆ, R. J., 1977, J. chem. Phys., 67, 4681.
- [32] KAUFMAN, F., 1958, Proc. R. Soc. A, 247, 123; KAUFMAN, F., 1958, J. chem. Phys., 28, 352.
- [33] CLYNE, M. A. A., and STEDMAN, D. H., 1966, Trans. Faraday Soc., 62, 2164; CLYNE, M. A. A., and THRUSH, B. A., 1962, Discuss. Faraday Soc., 33, 139.
- [34] ROTH, P., and JUST, Th., 1977, Ber. Bunsenges. phys. Chem., 81, 572.
- [35] DONOVAN, R. J., HUSAIN, D., and KIRSCH, L. J., 1970, J. chem. Soc. Faraday Trans., II, 71, 2551.
- [36] SINGLETON, D. L., IRWIN, R. S., NIGS, W. S., and CVETANOVIĆ, R. J., 1979, J. phys. Chem., 83, 2195.
- [37] BRAUN, W., and LENZI, M., 1967, Discuss. Faraday Soc., 44, 252.
- [38] BONANNO, R. J., and TIMMONS, R. B., STIEF, L. J., and KLEME, R. B., 1977, *J. chem. Phys.*, **66**, 92.
- [39] ROBERTSHAW, J. S., and SMITH, I. W. M., 1982, J. phys. Chem., 86, 785.
- [40] KURYLO, M. J., 1973, Chem. Phys. Lett., 23, 467; STUHL, F., and NIKI, H., 1972, J. chem. Phys. 57, 3671.
- [41] ANDERSON, J. G., and KAUFMAN, F., 1972, Chem. Phys. Lett., 16, 375.
- [42] OLSCHEWSKI, H. A., TROE, J., and WAGNER, H. GG., 1967, 11th Symposium (International) on Combustion, pp. 155.
- [43] GOLDEN, D. M., DELGRECO, F. P., and KAUFMAN, F., 1959, J. chem. Phys., 31, 944.
- [44] BECKER, K. H., HAAKS, D., and TATARCZYK, 1972, Z. Naturf., (a), 27, 1520; SILVER, J. A., DIMPFL, W. L., BROPHY, J. H., and KINSEY, J. L., 1976, J. chem. Phys., 65, 1811.
- [45] DEL GRECO, F. P., and KAUFMAN, F., 1962, Discuss. Faraday Soc., 33, 128.
- [46] CLYNE, M. A. A., and DOWN, S., 1974, J. chem. Soc. Faraday Trans. II, 70, 253.
- [47] CHAN, C., and DAILY, J. W., 1980, Appl. Optics, 19, 1357.
- [48] PARASKEVOPOULOS, G., and NIP, W. S., 1980, Can. J. Chem., 58, 2146.
- [49] WANG, C. C., and KILLINGER, D. K., 1977, Phys. Rev. Lett., 39, 929; KILLINGER, D. K., and WANG, C. C., 1977, Chem. Phys. Lett., 52, 374.
- [50] KANOFSKY, J. R., LUCAS, D., PRUSS, F., and GUTMAN, D., 1974, J. phys. Chem., 78, 311; SLAGLE, I. R., GILBERT, J. R., GRAHAM, R. E., and GUTMAN, D., 1975, Int. J. chem. Kinet. Symp., 1, 317.
- [51] MEYER, E., OLSCHEWSKI, H. A., TROE, J., and WAGNER, H. GG., 1968, 12th Symposium (International) on Combustion Pittsburgh, p. 345; TROE, J., 1969, Phys. Chem., 73, 946; KIJEWSKI, H., and TROE, J., 1971, Int. J. Chem. Kinet., 3, 233.
- [52] ALBERS, E. A., HOYERMANN, K., WAGNER, H. GG., and WOLFRUM, J., 1970, 13th Symposium (International) on Combustion Pittsburgh, p. 81.
- [53] PAUKERT, T. T., JOHNSTON, H. S., 1972, J. chem. Phys., 56, 2824.
- [54] SANDER, S. P., PETERSON, M., WATSON, R. T., and PATRICK, R., 1982, J. phys. Chem. 86, 1236.
- [55] BECKER, K. H., FINK, E. H., LEISS, A., and SCHURATH, M., 1978, Chem. Phys. Lett., 54, 191; BECKER, K. H., FINK, E. H., LANGEN, P., and SCHURATH, M., 1974, J. chem. Phys., 60, 4623.
- [56] HUNZIKER, H. E., and WENDT, H. R., 1974, J. chem. Phys., 60, 4622.
- [57] THRUSH, B. A., and TYNDALL, G. S., 1982, J. chem. Soc. Faraday Trans., II, 78, 1469.
- [58] CLYNE, M. A. A., and CRUSE, H. W., 1972, J. chem. Soc. Faraday Trans., II, 68, 1377; CLYNE, M. A. A., and CRUSE, H. W., 1972, J. chem. Soc. Faraday Trans., II, 68, 1281.
- [59] CHANG, H. W., SETZER, D. W., PERONA, M. J., and JOHNSON, R. J., 1971, Chem. Phys. Lett., 9, 587; HEIDNER, R. F., III, BOTT, J. F., GARDNER, C. E., and MELZER, J. E., 1980, J. chem. Phys., 72, 4815.
- [60] CLYNE, M. A. A., and NIP, W. S., 1978, Int. J. chem. Kinet., 10, 367.
- [61] POLLOCK, T. L., and JONES, W. E., 1973, Can. J. Chem., 51, 2041.
- [62] CLYNE, M. A. A., CRUSE, H. W., and WATSON, R. T., 1972, J. chem. Soc. Faraday Trans., II, 68, 152; CLYNE, M. A. A., and STEDMAN, D. H., 1968, Trans., Faraday Soc., 64, 1816.
- [63] BEMAND, P. P., and CLYNE, M. A. A., 1975, J. chem. Soc. Faraday Trans., II, 71, 1132.

~

- [64] BRAITHWAITE, M., and LEONE, S. R., 1978, J. chem. Phys., 69, 839.
- [65] BERNAND, P. P., CLYNE, M. A. A., and WATSON, R. T., 1973, J. chem. Soc. Faraday Trans., I, 69, 1356.
- [66] HEAVEN, M., MILLER, T. A., FREEMAN, R. R., WHITE, J. C., and BOKOR, J., 1982, Chem. Phys. Lett., 86, 458.
- [67] LINDEMAN, T. G., and WIESENFELD, J. R., 1977, Chem. Phys. Lett., 50, 364.
- [68] DONOVAN, R. J., FOTAKIS, C., and GOLDE, M. F., 1976, J. chem. Soc. Faraday Trans., II, 72, 2055.
- [69] BERNAND, P. P., and CLYNE, M. A. A., 1972, J. chem. Soc. Faraday Trans., II, 68, 1758; CLYNE, M. A. A., and TOWNSEND, L. W., 1974, J. chem. Soc. Faraday Trans., II, 70, 1863.
- [70] DAVIES, P. B., and RUSSELL, D. K., 1979, Chem. Phys. Lett., 67, 440.
- [71] KIM, P., MACLEAN, D. I., and VALANCE, W. G., 1980, J. phys. Chem., 84, 1806.
- [72] STIMPFLE, R. M., PERRY, R. A., and HOWARD, C. J., 1979, J. chem. Phys., 71, 5183.
- [73] LEU, M. T., and DEMORE, W. B., 1978, J. phys. Chem., 82, 2049.
- [74] Cox, R. A., and DERWENT, R. G., 1979, J. chem. Soc. Faraday Trans., I, 75, 1635.
- [75] KAKAR, R. K., COHEN, E. A., and GELLER, M., 1978, J. molec. Spectrosc., 70, 243.
- [76] MARGOLIS, J. S., MENZIES, R. T., and HINKLEY, E. D., 1978, Appl. Optics, 17, 1680;
 ROGOWSKI, R. S., BAIR, C. H., WADE, W. R., HOELL, J. M., and COPELAND, G. E., 1978, Appl. Optics, 17, 1301.
- [77] SANDER, S. P., and WATSON, R. T., 1981, J. phys. Chem., 85, 4000.
- [78] CLYNE, M. A. A., and WATSON, R. T., 1975, J. chem. Soc. Faraday Trans., I, 71, 336.
- [79] CLYNE, M. A. A., and WATSON, R. T., 1974, J. chem. Soc. Faraday Trans., I, 70, 1109.
- [80] WAGNER, H. GG., ZETZSCH, C., and WARNATZ, J., 1972, Ber. Bunsenges. phys. Chem., 76, 526.
- [81] CLYNE, M. A. A., and CRUSE, H. W., 1970, Trans., Faraday Soc., 66, 2214; CLYNE, M. A. A., and CRUSE, H. W., 1970, Trans., Faraday Soc., 66, 2227.
- [82] COMBOURIEU, J., BRAS, G. L., POULET, G., and JOURDAIN, J. L., 1977, 16th Symposium (International) on Combustion, p. 863.
- [83] EVENSON, K. M., and RADFORD, H. E., 1965, Phys. Rev. Lett., 15, 916; EVENSON, K. M., and RADFORD, H. E., 1968, Phys. Rev., 168, 70; FELL, B., RIVAS, I. V., and McFadden, D. L., 1981, J. phys. Chem., 85, 224.
- [84] LIN, C. L., and KAUFMAN, F., 1971, J. chem. Phys., 55, 3760.
- [85] HUSAIN, D., MITRA, S. K., and YOUNG, A. N., 1974, J. chem. Soc. Faraday Trans., II, 10, 1721.
- [86] HUSAIN, D., and SLATER, N. K. H., 1980, J. chem. Soc. Faraday Trans., II, 76, 606.
- [87] GOLDE, M. F., and THRUSH, B. A., 1973, Rep. Prog. Phys., 36, 1285.
- [88] MORSE, F. A., and KAUFMAN, F., 1965, J. chem. Phys., 42, 1785; CLYNE, M. A. A., JAFFE, S., and WHITEFIELD, P. D., 1980, J. chem. Soc. Faraday Trans., II, 76, 369.
- [89] ZETZSCH, C., and HANSEN, I., 1978, Ber. Bunsenges. phys. Chem., 82, 830.
- [90] ANDERSON, W. R., and CROSLEY, D. R., 1979, Chem. Phys. Lett., 62, 275.
- [91] MURPHY, E. J., BROPHY, J. H., ARNOLD, G. S., DIMPFL, W. L., and KINSEY, J. L., 1981, J. chem. Phys., 74, 324.
- [92] HANCOCK, G., LANGE, W., LENZI, M., and WELGE, K. H., 1975, Chem. Phys. Lett., 33, 1, 168; HANCOCK, G., LANGE, W., LENZI, M., and WELGE, K. H., 1975, Chem. Phys. Lett., 33, 168.
- [93] ATKINSON, G. H., LAUFER, A. H., and KURYLO, M. J., 1973, J. chem. Phys., 59, 350.
- [94] HACK, W., SCHACKE, H., SCHRÖTER, M., and WAGNER, H. GG., 1979, 17th Symposium (International) on Combustion, p. 505.
- [95] GREEN, R. M., and MILLER, J. A., 1981, Sandia Laboratories Report 80–8858; DEMISSY, M., and LESCLAUX, R., Int. J. chem. Kinet., 14, 1; KHE, P. V., and LESCLAUX, R., 1979, J. phys. Chem., 83, 1119.
- [96] HAKUTA, K., and UEHARA, H., 1981, J. chem. Phys., 74, 5995.
- [97] HILLS, G. W., and MCKELLAR, A. R. W., 1979, J. chem. Phys., 71, 3330.
- [98] CARRINGTON, A., GEIGER, J. S., SMITH, D. R., BONNETT, J. D., and BROWN, C., 1982, Chem. Phys. Lett., 90, 6.
- [99] DAVIES, P. B., RUSSELL, D. K., THRUSH, B. A., and WAYNE, F. D., 1975, J. chem. Phys., 62, 3739.
- [100] KAWAGUCHI, K., YAMADA, C., and HIROTA, E., 1980, J. molec. Spectrosc., 81, 60.

- [101] DAVIES, P. B., HANDY, B. J., and RUSSELL, D. K., 1979, Chem. Phys. Lett., 68, 395.
- [102] CHOU, M. S., DEAN, A. M., and STERN, D., 1982, J. chem. Phys., 76, 5334.
- [103] WAYNE, F. D., and RADFORD, H. E., 1976, Molec. Phys., 32, 1407; RADFORD, H. E., and LITVAK, M. M., 1975, Chem. Phys. Lett., 34, 561.
- [104] HUIE, R. E., LONG, N. J. T., and THRUSH, B. A., 1978, J. chem. Soc. Faraday Trans., II, 74, 1253.
- [105] DAVIES, P. B., RUSSELL, D. K., and THRUSH, B. A., 1976, Chem. Phys. Lett., 37, 43; DAVIES,
 P. B., RUSSELL, D. K., THRUSH, B. A., and RADFORD, H. E., 1979, Chem. Phys., 44, 421.
- [106] HILLS, G. W., and MCKELLAR, A. R. W., 1979, J. chem. Phys., 71, 1141.
- [107] CURL, R. F., ENDO, Y., KAKIMOTO, M., SAITO, S., and HIROTA, 1978, Chem. Phys. Lett., 53, 536.
- [108] DAVIES, P. B., and TEMPS, F., 1981, J. chem. Phys., 74, 6556.
- [109] DAVIES, P. B., RUSSELL, D. K., and THRUSH, B. A., 1975, Chem. Phys. Lett., 36, 280.
- [110] UEHARA, H., and HAKUTA, K., 1981, J. chem. Phys., 74, 4326.
- [111] DAVIES, P. B., RUSSELL, D. K., SMITH, D. R., and THRUSH, B. A., 1979, Can. J. Phys., 57, 522.
- [112] HUSAIN, D., and SLATER, N. K. H., 1978, J. chem. Soc. Faraday Trans., II, 74, 1627.
- [113] HUSAIN, D., and SLATER, N. K. H., 1978, J. chem. Soc. Faraday Trans., II, 74, 1222.
- [114] HUSAIN, D., KRAUSE, L., and SLATER, N. K. H., 1977, J. chem. Soc. Faraday Trans., II, 73, 1706.
- [115] HUSAIN, D., KRAUSE, L., and SLATER, N. K. H., 1977, J. chem. Soc. Faraday Trans., II, 73, 1678.
- [116] HUSAIN, D., and NORRIS, P. E., 1977, J. chem. Soc. Faraday Trans., II, 73, 415; HUSAIN, D., and NORRIS, P. E., 1977, J. chem. Soc. Faraday Trans., II, 83, 1107.
- [117] HUSAIN, D., and NORRIS, P. E., 1977, J. chem. Soc. Faraday Trans., II, 73, 1815.
- [118] HUSAIN, D., and SLATER, N. K. H., 1977, J. Photochem., 7, 59.
- [119] HUSAIN, D., and SLATER, N. K. H., 1977, J. Photochem., 6, 325.
- [120] HUSAIN, D., KIRSCH, L. J., and WIESENFELD, J. R., 1972, Discuss. Faraday Soc., 53, 201.;
- [121] MALINS, R. J., and SETSER, D. W., 1980, J. chem. Phys., 74, 5666.
- [122] TENNYSON, P. H., FONTIJN, A., and CLYNE, M. A. A., 1981, Chem. Phys., 62, 171.
- [123] HACK, W., and HORIE, O., 1981, Chem. Phys. Lett., 82, 327.
- [124] BURDEN, F. R., CLYNE, M. A. A., and FONTIJIN, A., 1982, Chem. Phys., 65, 123.
- [125] CHEGODAEV, P. P., TUPIKOV, V. I., and STOUKOV, E. G., 1973, Russ. J. phys. Chem., 47, 746; AL'ZOBA, V. S., CHEGODAEV, P. P., and TUPIKOV, V. I., 1977, Dokl. Akad. Nauk. SSSR., 206, 143.
- [126] KIM, K. C., and LAGUNA, G. A., 1981, Chem. Phy. Lett., 82, 292.
- [127] TICE, J. J., WAMPLER, F. B., OLDENBORG, R. C., and RICE, W. W., 1981, Chem. Phys. Lett., 82, 80; HAWKINS, W. G., and HOUSTON, P. L., 1980, J. chem. Phys., 73, 297.
- [128] BECKER, K. H., CAPELLE, G., HAAKS, D., and TATARCZYK, T., 1974, Ber. Bunsenges. phys. Chem., 78, 1157.
- [129] ROHRBECK, W., HINZ, A., and URBAN, W., 1980, Molec. Phys., 41, 925; Lowe, R. S., 1980, Molec. Phys., 41, 929.
- [130] RAMSAY, D. A., 1956, Nature, Lond., 178, 374; VEROLOET, M., and BERTHOU, J. M., 1976, Can. J. Phys., 54, 1375.
- [131] BRAUN, W., BASS, A. M., DAVIS, D. D., and SIMMONS, J. D., 1969, Proc. R. Soc. London, A, 312, 417.
- [132] KLEY, D., WASHIDA, N., BECKER, K. H., and GROTH, W., 1972, Chem. Phys. Lett., 15, 45.
- [133] HUSAIN, D., and NEWTON, D. P., 1982, J. chem. Soc. Faraday Trans.,, II, 78, 51.
- [134] HACK, W., and LANGEL, W., 1981, Chem. Phys. Lett., 81, 387.
- [135] BRENNAN, W., and CARRINGTON, T., 1967, J. chem. Phys., 46, 7.
- [136] BLEEKRODE, R., and NIEUWPOORT, W. C., 1965, J. chem. Phys., 43, 3680; BROWN, W., MCNESBY, J. R., and BASS, A. M., 1967, J. chem. Phys., 46, 2071.
- [137] FILSETH, S. V., ZACHARIAS, H., DANON, J., WALLENSTEIN, R., and WELGE, K. H., 1978, Chem. Phys. Lett., 58, 140.
- [138] HOUGEN, J. T., MUCHA, J. A., JENNINGS, D. A., and EVENSON, K. M., 1978, J. molec. Spectrosc., 72, 463.
- [139] WAGAL, S. S., CARRINGTON, T., FILSETH, S. V., and SADOWSKI, C. M., 1982, Chem. Phys., 69, 61.
- [140] BONCZYK, P. A., and SHIRLEY, J. A., 1979, Combust. Flame, 34, 253; HERZBERG, G., and SHOOSMITH, J., 1956, Can. J. Phys., 34, 523.

- [141] GLÄNSER, K., QUACK, M., and TROE, J., 1977, 16th Symposium (International) on Combustion, p. 949, Pittsburgh.
- [142] BASCEO, N., JAMES, D. G. L., and STUART, R. D., 1970, Int. J. chem. Kinet., 2, 215.
- [143] CALLEAR, A. B., and METCALFE, M. P., 1976, Chem. Phys., 14, 275.
- [144] DANON, J., ZACHARIAS, H., ROTTKE, H., and WELGE, K. H., 1982, J. chem. Phys., 76, 2399;
 DI GIUSEPPE, T. G., HUDGENS, J. W., and LIN, M. E., 1982, J. phys. Chem., 86, 36; DI GUISEPPE, T. G., HUDGENS, J. W., and LIN, M. E., 1982, J. chem. Phys., 76, 3338.
- [145] PLUMB, T. E., and RYAN, K. R., 1982, Int. J. chem. Kinet., 14, 861; WASHIDA, N., and BAYES, K. D., 1976, Int. J. chem. Kinet., 8, 777.
- [146] BAUGCHUM, S. L., and LEONE, S. R., 1982, Chem. Phys., Lett., 89, 183.
- [147] CLYNE, M. A. A., and CONNOR, J., 1972, J. chem. Soc. Faraday Trans., II, 68, 1220.
- [148] FOTAKIS, C., MARTIN, M., and DONOVAN, R. J., 1982, J. chem. Soc. Faraday Trans., I, 78, 1363.
- [149] DIXON, R. N., and KROTO, H. W., 1963, Trans., Faraday Soc., 59, 1484; JAMES, F. C., RUZSICSKA, B., MCDANIEL, R. S., DICKSON, R., STRAUSZ, O. P., and BELL, T. N., 1977, Chem. Phys. Lett., 45, 449.
- [150] CARRINGTON, A., and HOWARD, B. J., 1970, Molec. Phys., 18, 225.
- [151] SAYKALLY, R. J., LUBIC, K. G., SCALABIN, A., and EVENSON, K. M., 1982, J. chem. Phys., 77, 58.
- [152] THRUSH, B. A., and ZWOLENIK, J. J., 1963, Trans., Faraday Soc., 59, 582.
- [153] KAWAGUCHI, K., YAMADA, C., HAMADA, Y., and HIROTA, E., 1981, J. molec. Spectrosc., 86, 136.
- [154] TIEE, J. J., WAMPLER, F. B., and RICE, W. W., JR., 1980, Chem. Phys. Lett., 73, 519.
- [155] JAMES, F. C., CHOI, H. K. J., STRAUSZ, O. P., and BELL, T. N., 1979, Chem. Phys. Lett., 68, 131.
- [156] LE BLANC, F. J., 1968, J. chem. Phys., 48, 1841.
- [157] SCHACKE, H., SCHMATJKO, K. J., and WOLFRUM, J., 1973, Ber. Bunsenges. phys. Chem., 77, 247.
- [158] ADDISON, M. C., LEITCH, A. L., FOTAKIS, C., and DONOVAN, R., 1979, J. Photochem., 10, 273.
- [159] CODY, R. J., SABETY-DZVONIK, M. J., and JACKSON, W. M., 1977, J. chem. Phys., 66, 2145.
- [160] CONLEY, C., HALPERN, J. B., WOOD, J., VAUGHN, C., and JACKSON, W. M., 1980, Chem. Phys. Lett., 73, 224.
- [161] WASHIDA, N., KLEY, D., BECKER, K. H., and GROTH, W., 1975, J. chem. Phys., 63, 4230.
- [162] CLOUGH, P. N., and JOHNSTON, J., 1980, Chem. Phys. Lett., 71, 253.
- [163] BARROW, R. F., DIXON, R. N., LAGERQUIST, A., and WRIGHT, C. V., 1960, Ark. Fys., 18, 543.
- [164] LAGERQUIST, A., WESTERLUND, H., WRIGHT, C. V., and BARROW, R. F., 1958, Ark. Fys., 14, 387.
- [165] HYNES, A. J., and BROPHY, J. H., 1979, Chem. Phys. Lett., 63, 93.
- [166] MARTIN, M., and DONOVAN, R. J., 1982, J. Photochem., 18, 245.
- [167] FELDMAN, D., MEIER, K., ZACHARIAS, H., and WELGE, K. H., 1978, Chem. Phys. Lett., 59, 171; FILSETH, S. V., DANON, J., FELDMANN, D., CAMPBELL, J. D., and WELGE, K. H., 1979, Chem. Phys. Lett., 66, 329.
- [168] HERZBERG, G., and JOHNS, J. W. C., 1971 (and references given there), J. chem. Phys., 54, 2276.
- [169] MUCHA, J. A., EVENSON, K. M., JENNINGS, D. A., ELLISON, G. B., and HOWARD, C. J., 1979, Chem. Phys. Lett., 66, 244.
- [170] SEARS, T. J., BUNKER, P. R., and MCKELLAR, A. R. W., EVENSON, K. M., JENNINGS, D. A., and BROWN, J. M., 1982, J. chem. Phys., 77, 5348; SEARS, T. J., BUNKER, P. R., and MCKELLAR, A. R. W., 1982, J. chem. Phys., 77, 5363.
- [171] HERZBERG, G., 1961, Proc. R. Soc. Lond. A, 262, 291.
- [172] ASHFOLD, M. N. R., FULLSTONE, M. A., HANCOCK, G., and DUXBURG, G., 1982, Molec. Phys., 45, 887.
- [173] ASHFOLD, M. N. R., CASTANO, F., HANCOCK, G., and KETLEY, G. W., 1980, Chem. Phys. Lett., 73, 421.
- [174] HACK, W., and LANGEL, W., 1983, J. Photochem., 21, 105; KING, D. S., SCHENCK, P. K., and STEPHENSON, J. C., 1979, J. molec. Spectrosc., 78, 1.
- [175] MERER, A. J., and TRAVIS, D. N., 1966, Can. J. Phys., 44, 1541.

- [176] HANCOCK, G., and KETLEY, G. W., 1982, J. chem. Soc. Faraday Trans. II, 78, 1283.
- [177] SUZUKI, T., SAITO, S., and HIROTA, E., 1981, J. molec. Spectrosc., 90, 447; KAKIMOTO, M., SAITO, S., and HIROTA, E., 1981, J. molec. Spectrosc., 88, 300.
- [178] PATEL, R. I., STEWART, C. W., CASLETON, K., GOLE, J. L., and LOMBARDI, J. R., 1980, Chem. Phys., 52, 461; DORNHÖFER, G., and HACK, W., 8/1983, MPI für Strömungsforschung, Bericht.
- [179] PORTER, TH., MANN, D. E., and ACQUISTA, N., 1965, J. molec. Spectrosc., 16, 228; CARROLL, P. K., and GRENNAN, T. P., 1970, J. Phys. B, 3, 865.
- [180] VAN DEN HEUVEL, F. C., MEERTS, W. L., and DYMANUS, A., 1982, Chem. Phys. Lett., 88, 59.
- [181] VERMA, R. D., and MULLIKEN, R. S., 1961, J. molec. Spectrosc., 6, 419.
- [182] TYERMAN, W. J. R., 1969, Trans. Faraday Soc., 65, 1188.
- [183] MEUNIER, H., PURDY, J. R., and THRUSH, B. A., 1980, J. chem. Soc. Faraday Trans., II, 76, 1304; HUIE, R. E., LONG, N. J. T., and THRUSH, B. A., 1977, Chem. Phys. Lett., 51, 197.
- [184] PURDY, J. R., and THRUSH, B. A., 1980, Chem. Phys. Lett., 73, 228.
- [185] DAVIES, P. B., LEWIS-BEVAN, W., and RUSSELL, D. K., 1981, J. chem. Phys., 75, 56002.
- [186] MARTINEZ, R. I., and HERRON, J. T., 1981, Chem. Phys. Lett., 84, 180.
- [187] HIKIDA, T., TOZAWA, T., and MORI, Y., 1980, Chem. Phys. Lett., 70, 579.
- [188] KODA, S., 1979, J. phys. Chem., 83, 2065; TOBY, S., and TOBY, F. S., 1980, J. phys. Chem., 84, 206.
- [189] SCHUG, K. P., and WAGNER, H. GG., 1978, Ber. Bunsenges. phys. Chem., 82, 719.
- [190] BIALKOWSKI, S. E., KING, D. S., and STEPHENSON, J. C., 1979, J. chem. Phys., 71, 4010;
 BIALKOWSKI, S. E., and GUILLORY, W. A., 1982, J. phys. Chem., 86, 2007.
- [191] GLÄNZER, K., MAIER, M., and TROE, J., 1979, Chem. Phys. Lett., 61, 175.
- [192] DUIGNAN, M. T., HUDGENS, J. W., and WYATT, J. R., 1982, 15th Informal Conference on Photochemistry, Abstr. L3.
- [193] RAMSAY, D. A., 1953, J. chem. Phys., 21, 960; HERZBERG, G., and RAMSAY, D. A., 1956, Proc. R. Soc. Lond. A, 233, 34.
- [194] BROWN, J. M., BUTTENSHAW, J., CARRINGTON, A., and PARENT, C. R., 1977, *Molec. Phys.*, 33, 589; JOHNS, J. W. C., MCKELLAR, A. R. W., and RIGGIN, M., 1977, *J. chem. Phys.*, 67, 2427; BROWN, J. M., BUTTENSHAW, J., CARRINGTON, A., DUNYSER, K., and PARENT, C. R., 1980, *J. molec. Spectrosc.*, 79, 47.
- [195] Соок, J. M., Evenson, K. M., Howard, C. J., and Curl, R. F. Jr., 1976, *J. chem. Phys.*, **64**, 1381.
- [196] LANDSBERG, B. M., MERER, A. J., and OKA, T., 1977, J. molec. Spectrosc., 67, 459.
- [197] VAIDYA, W. M., 1934, Proc. R. Soc. A, 147, 513; VAIDYA, W. M., 1951, Proc. phys. Soc. A, 64, 428; VAIDYA, W. M., 1964, Proc. R. Soc. A, 279, 572; JACOX, M. E., 1978, Chem. Phys. Lett., 56, 43.
- [198] HOCHANANDEL, J. C., SWORSKI, T. J., and OGREEN, P. G., 1980, J. phys. Chem., 84, 231;
 BROWN, J. M., and RAMSAY, D. A., 1975, Can. J. Phys., 53, 2232.
- [199] HANSEN, D. A., ATKINSON, R., and PITTS, J. N. JR., 1977, J. Photochem., 7, 379.
- [200] TOBY, S., and TOBY, F. S., 1981, J. phys. Chem., 85, 4071.
- [201] MOORE, C. B. (Ed.), HIROTA, E., 1980 (and references given there), Chem. biochem. Appl. Lasers, 5, 39.
- [202] WASHIDA, N., MARTINEZ, R. I., and BAYES, K. D., 1974, Z. Naturf. (a), 29, 251.
- [203] RULLY, J. P., CLARK, J. H., MOORE, C. B., and PIMENTEL, G. C., 1978, J. chem. Phys., 69, 4381; NADTOCHENKO, V. A., SARKISOV, O. M., and VEDENEEV, V. I., 1979, Dokl. Akad. Nauk. SSSR, 244, 152.
- [204] VEYRET, B., and LESCLAUX, R., 1981, J. phys. Chem., 85, 1918.
- [205] INONE, G., AKIMOTO, H., and OKADA, M., 1979, Chem. Phys. Lett., 63, 213; INONE, G., AKIMOTO, H., and OKADA, M., 1980, J. chem. Phys., 72, 1969.
- [206] OKBAYASKI, K., AKIMOTO, H., and TANAKA, I., 1977, J. phys. Chem., 81, 798.
- [207] WENDT, H. R., and HUNZIKER, H. E., 1979, J. chem. Phys., 71, 5202.
- [208] RADFORD, H. E., and RUSSELL, D. K., 1977, J. chem. Phys., 66, 2222.
- [209] HOYERMANN, K., LOFTFIELD, N. S., SIEVERT, R., and WAGNER, H. GG., 1981, 18th Symposium (International) on Combustion, p. 831.
- [210] STYLE, D. W. G., and WARD, J. C., 1953, Trans. Faraday Soc., 49, 999.
- [211] SUTOH, M., WASHIDA, N., AKIMOTO, H., NAKAMURA, M., and OKUDA, M., 1980, J. chem. Phys., 73, 591.

- [212] GUTMAN, D., SANDERS, N., and BUTLER, J. E., 1982, J. phys. Chem., 86, 66.
- [213] SANDERS, N., BUTLER, J. E., PASTERNACK, L. R., and MCDONALD, J. R., 1980, Chem. Phys., 48, 203.
- [214] INOUE, G., OKUDA, M., and AKIMOTO, H., 1981, J. chem. Phys., 75, 2060; EBATA, T., YANAGISHITA, H., OBI, K., and TANAKEN, I., 1982, Chem. Phys., 69, 27.
- [215] RADFORD, H. E., EVENSON, K. M., and JENNINGS, D. A., 1981, Chem. Phys. Lett., 78, 589.
- [216] INOUE, G., and AKIMOTO, H., 1981, J. chem. Phys., 74, 425.
- [217] PARKS, D. A., PAUL, D. M., QUINN, C. P., and ROBSON, R. C., 1973, Chem. Phys. Lett., 23, 425.
- [218] HOCHANADEL, C. J., GHORMLEY, G. A., BOYLE, J. W., and OGREN, P. J., 1977, J. phys. Chem., 81, 3.
- [219] PLUMB, I. C., RYAN, K. R., STEVENS, J. R., and MULCAHY, M. F. R., 1979, Chem. Phys. Lett., 63, 255; PLUMB, I. C., and RYAN, K. R., 1982, Chem. Phys. Lett., 92, 236.
- [220] ANASTASI, C., SMITH, I. W. M., and PARKES, D. A., 1978, J. chem. Soc. Faraday Trans., I, 74, 1693; SANDER, S. P., and WATSON, R. T., 1980, J. phys. Chem., 84, 1664; SANDER, S. P., and WATSON, R. T., 1981, J. phys. Chem., 85, 2960.
- [221] Cox, R. A., and TYNDALL, G. S., 1980, J. chem. Soc. Faraday Trans., II, 76, 153.
- [222] BARTELS, M., HOYERMANN, K., and SIEVERT, R., 1982, 19th Symposium (International) on Combustion, Haifa, p. 12.
- [223] JONES, I. N. N., and BAYES, K. D., 1972, J. am. chem. Soc., 94, 6869; KANOWSKY, J., LUCAS, D., PRUSS, F., and GUTMAN, D., 1974, J. phys. Chem., 78, 311.
- [224] PLUMB, I. C., and RYAN, K. R., 1982, Chem. Phys. Lett., 92, 236.
- [225] ADACHI, H., BASCO, N., and JAMES, D. G. L., 1979, Int. J. chem. Kinet., 11, 1211.
- [226] ADACHI, H., and BASCO, N., 1979, Chem. Phys. Lett., 67, 324.
- [227] CHARLTON, T. R., OKAMURA, T., and THRUSH, B. A., 1982, Chem. Phys. Lett., 89, 98.
- [228] ANDERSON, W. R., VANDERHOFF, J. A., KOTLAR, A. J., DEWILDE, M. A., and BEYER, R. A., 1982, J. chem. Phys., 77, 1677.
- [229] DIXON, R. N., 1960, Phil. Trans., R. Soc. Lond., 252, 165; DIXON, R. N., 1960, Can. J. Phys., 38, 10.
- [230] BARNES, C. E., BROWN, J. M., and FACKERELL, A. D., 1982, J. molec. Spectrosc., 92, 485.
- [231] CARRINGTON, A., FABRIS, A. R., HOWARD, B. J., and LUCAS, N. J. D., 1971, Molec. Phys., 20, 961.
- [232] HOYERMANN, K., and SIEVERT, R. (in the press).
- [233] LANGE, W., and WAGNER, H. GG., 1975, Ber. Bunsenges. phys. Chem., 79, 165.
- [234] CARRICK, P. G., PFEIFER, J., CURL, R. F. JR., KOESTER, E., TITTEL, F. K., and KASPER, J. V. V., 1982, J. chem. Phys., 76, 3336.
- [235] HOYERMANN, K., and SIEVERT, R., 1978, 17th Symposium (International) on Combustion, p. 517.
- [236] PLUMB, J. C., and RYAN, K. R., 1981, Int. J. chem. Kinet., 13, 1011.
- [237] ADACHI, H., BASCO, N., and JAMES, D. G. L., 1979, Int. J. chem. Kinet., 11, 995.
- [238] MCDADE, C. E., LENHARDT, T. M., and BAYES, K. D., 1982, J. Photochem., 20, 1.
- [239] ADACHI, H., BASCO, N., and JAMES, D. G. L., 1981, Int. J. chem. Kinet., 13, 1251.
- [240] KLEINERMANNS, K., and LUNTZ, A. C., 1981, J. phys. Chem., 85, 1966.
- [241] ADDISON, M. C., BURROWS, J. P., COX, R. A., and PATRICK, R., 1980, Chem. Phys. Lett., 73, 283.
- [242] HEISLER, H., MANGIR, M., and WITTIG, C., 1980, Chem. Phys., 47, 49.
- [243] GAUSSET, L., HERZBERG, G., LAGERQUIST, A., and ROSEN, B., 1965, Astrophys. J., 142, 45.
- [244] BECKER, K. H., HAAKS, D., and TATARCZYK, T., 1974, Z. Naturf. (a), 29, 829; TATARCZYK,
 T., FINK, E. H., and BECKER, K. H., 1976, Chem. Phys. Lett., 40, 126.
- [245] PITTS, W. M., PASTERNACK, L., and MCDONALD, J. R., 1982, Chem. Phys., 68, 417.
- [246] JONES, D. G., and MACKIE, J. C., 1976, Combust. Flame, 27, 143.
- [247] DROWART, J., BURNS, R. P., DEMARIA, G., and INGHRAM, M. G., 1959, J. chem. Phys., 31, 1131.
- [248] KAKIMOTO, M., and KASUYA, T., 1982, J. molec. Spectrosc., 94, 380.
- [249] MERER, A. J., and TRAVIS, D. N., 1965, Can. J. Phys., 43, 1795.
- [250] MUCHA, J. A., JENNINGS, D. A., EVENSON, K. M., and HOUGEN, J. T., 1977, J. molec. Spectrosc., 68, 122.
- [251] DEVILLERS, C., and RAMSAY, D. A., 1971, Can. J. Phys., 49, 2839.

- [252] BECKER, K. H., HORIE, O., SCHMIDT, V. H., and WIESEN, P., 1982, Chem. Phys. Lett., 90, 64.
- [253] PITTS, W. M., DONNELLEY, V. M., BARONAVSKI, A. P., and MCDONALD, J. R., 1981, Chem. Phys., 61, 451.
- [254] HETHERINGTON, W. M., III, KORENNOWSKI, G. M., and EISENTHAL, K. B., 1981, Chem. Phys. Lett., 77, 275.
- [255] GROSS, K. P., GUTHALS, D. M., and NIBLER, J. W., 1979, J. chem. Phys., 70, 4673.
- [256] JONES, I. T. N., and BAYES, K. D., 1973, Proc. R. Soc. Lond. A, 335, 547.
- [257] SLAGLE, I. R., DUDICH, J. F., and GUTMAN, D., 1979, J. phys. Chem., 83, 3065.
- [258] KANOFSKY, J. R., LUCAS, D., and GUTMAN, D., 1973, 14th Symposium (International) on Combustion, p. 285.
- [259] BLUMENBERG, B., HOYERMANN, K., and SIEVERT, R., 1977, 16th Symposium (International) on Combustion, p. 841.
- [260] SAYKALLY, R. J., and EVENSON, K. M., 1978, 33rd Symposium Molecular Spectroscopy, Columbus Ohio; SAYKALLY, R. J., VESETH, L., and EVENSON, K. M., 1984, J. chem. Phys., 80, 2247.
- [261] SAYKALLY, R. J., and EVENSON, K. M., 1980, Astrophys. J., 238, L 107.
- [262] CLARK, T. C., and CLYNE, M. A. A., 1970, Trans. Faraday Soc., 66, 877.
- [263] ZACHARIAS, H., ANDERS, A., HALPERN, J. P., and WELGE, K. H., 1976, Opt. Commun., 19, 116; ZACHARIAS, H., ANDERS, A., HALPERN, J. P., and WELGE, K. H., 1977, Opt. Commun., 20, 449.
- [264] MIZUSHIMA, M., EVENSON, K. M., and WELLS, J. S., 1972, Phys. Rev., A, 5, 2276; HAKUTA, K., and UEHARA, H., 1977, J. molec. Spectrosc., 67, 440; DALE, R. M., JOHNS, J. W. C., MCKELLAR, A. R. W., and RIGGIN, M., 1975, J. molec. Spectrosc., 58, 316.
- [265] GARSIDE, B. K., BALLIK, E. A., ELSHERBINY, M., and SHEWCHUN, J., 1977, Appl. Optics, 16, 398.
- [266] JINGUJI, M., OHOKUBO, Y., and TANAKA, I., 1978, Chem. Phys. Lett., 54, 136.
- [267] UEHARA, H., 1981, Chem. Phys. Lett., 84, 539.
- [268] ANDERSON, V. M., and CALLOMON, J. H., 1973, J. Phys., B, 6, 1664.
- [269] GRIESER, D. R., and BARNES, R. H., 1980, Appl. Optics, 19, 741.
- [270] MALLARD, W. G., MILLER, J. H., and SMYTH, K. C., 1982, J. chem. Phys., 76, 3483; ROCKNEY, B. H., COOL, T. A., and GRANT, E. R., 1982, Chem. Phys. Lett., 87, 141.
- [271] CLYNE, M. A. A., and HEAVEN, M. C., 1981, Chem. Phys., 58, 145.
- [272] SMYTH, K. C., and MALLARD, W. G., 1982, J. chem. Phys., 77, 1779.
- [273] BRIGGS, A. G., 1981, Spectrosc. Lett., 14, 61.
- [274] SAKURAI, K., and BROIDA, H. P., 1969, J. chem. Phys., 50, 2404.
- [275] BASS, A. M., LEDFORD, A. E. JR., and LAUFER, A. H. (and references given there), 1976, J. Res. Nat. Bur. Stand. A, 80, 143.
- [276] DONNELLY, V. M., and KAUFMAN, F., 1977, J. chem. Phys., 66, 4100; DONNELLY, V. M., and KAUFMAN, F., 1978, J. chem. Phys., 69, 14; DONNELLY, V. M., KEIL, D. G., and KAUFMAN, F. (and references given there), 1979, J. chem. Phys., 71, 659; DONNELLY, V. M., KEIL, D. G., and KAUFMAN, F., 1980, J. chem. Phys., 73, 1514.
- [277] FREUND, S. M., HOUGEN, J. T., and LAFFERTY, W. J., 1975, Can. J. Phys., 53, 1929.
- [278] HAKUTA, K., and UEHARA, H., 1982, J. molec. Spectrosc., 94, 126.
- [279] CHESKIS, S. G., NADTOCHENKO, V. A., and SARKISOV, O. M., 1981, Int. J. chem. Kinet., 13, 1041.
- [280] BANCROFT, J. L., HOLLAS, J. M., and RAMSAY, D. A., 1962, Can. J. Phys., 40, 322.
- [281] ISHIWATA, T., AKIMOTO, H., and TANAKA, I., 1973, Chem. Phys. Lett., 21, 322.
- [282] DONOVAN, R. J., HUSAIN, D., FAIR, R. W., STRAUSZ, O. P., and GUNNING, H. E., 1970, Trans. Faraday Soc., 66, 1635.
- [283] VAN ROODSELAAR, A., OBI, K., and STRAUSZ, O. P., 1978, Int. J. chem. Kinet., 10, 31.
- [284] ADDISON, M. E., BYRNE, C. D., and DONOVAN, R. J., 1979, Chem. Phys. Lett., 64, 57.
- [285] CLYNE, M. A. A., and WHITEFIELD, P. D., 1979, J. chem. Soc. Faraday Trans., II, 75, 1327.
- [286] WAYNE, F. D., DAVIES, P. B., and THRUSH, B. A., 1974, Molec. Phys., 28, 989.
- [287] SMITH, A. L., and HOPKINS, J. B. (and references given there), 1981, J. chem. Phys., 75, 2080.
- [288] PROSSER, S. J., BARROW, R. F., EFFANTIN, E., D'INCAN, J. (and references given there), 1982, J. Phys. B, 15, 4151; HEAVEN, M., MILLER, T. A., ENGLISH, J. H., and BONDYBEY, V. E., 1982, Chem. Phys. Lett., 91, 251.
- [289] RAMSAY, D. A., 1952, J. chem. Phys., 20, 1920.

- [290] PATHAK, C. M., and PALMER, H. B., 1969, J. molec. Spectrosc., 32, 157.
- [291] DAVIES, P. B., HANDY, B. J., LLOYD, E. K. M., and RUSSELL, D. K., 1978, Molec. Phys., 36, 1005.
- [292] DAVIES, P. B., HANDY, B. J., LLOYD, E. K. M., and RUSSELL, D. K., 1978, J. chem. Phys., 68, 3377; BROWN, J. M., CARRINGTON, A., and SEARS, T. J., 1979, Molec. Phys., 37, 1837; BROWN, J. M., CARRINGTON, A., and FACKERELL, A. D., 1980, Chem. Phys. Lett., 75, 13.
- [293] LINDGREN, B., 1968, J. molec. Spectrosc., 28, 536.
- [294] CLYNE, M. A. A., and MACROBERT, A. J., 1980, Int. J. chem. Kinet., 12, 79.
- [295] NORRISH, R. G. W., and OLDERSHAW, G. A., 1959, Proc. R. Soc. Lond. A, 249, 498; COLIN, R., 1969, Can. J. Phys., 47, 979; PHILLIPS, L. F., J. phys. Chem., 85, 3.
- [296] HERRON, J. T., and HUIE, R. E., 1980, Chem. Phys. Lett., 76, 322.
- [297] CLYNE, M. A. A., and LIDDY, J. P., 1982, J. chem. Soc. Faraday Trans., II, 78, 1127; CLYNE,
 M. A. A., and MCDERMID, I. S., 1979, J. chem. Soc. Faraday Trans., II, 75, 905.
- [298] BARNS, T., BECKER, K. H., and FINK, E. H., 1979, Chem. Phys. Lett., 67, 310; BLACK, G., SHARPLESS, R. L., and SLANGER, T. G., 1982, Chem. Phys. Lett., 90, 55.
- [299] DAVIES, P. B., WAYNE, F. D., and STONE, A. J., 1974, Molec. Phys., 28, 1409.
- [300] KAWAGUCHI, K., YAMADA, C., and HIROTA, E., 1979, J. chem. Phys., 71, 3338; KAWAGUCHI, K., YAMADA, C., and HIROTA, E., 1978, J. chem. Phys., 69, 1942; COLIN, R., 1969, Can. J. Phys., 47, 979.
- [301] HAKUTA, K., and UEHARA, H., 1981, J. molec. Spectrosc., 85, 97.
- [302] BARROW, R. F., and DEUTSCH, E. W., 1963, Proc. phys. Soc., 82, 548.
- [303] MCDONALD, C. A., ELAND, J. H. D., and BARROW, R. F., 1982, J. Phys. B, 15, 193.
- [304] BECKER, K. H., INOCENCIO, M. A., and SCHURATH, U., 1975, Int. J. chem. Kinet. 1, Symp., 205; SCHURATH, U., WEBER, M., and BECKER, K. H., 1977, J. chem. Phys., 67, 119.
- [305] KAWASAKI, M., KASATANI, K., and SATO, H., 1970, Chem. Phys. Lett., 75, 128.
- [306] WEBSTER, C. R., BRUCAT, P. J., and ZARE, R. N., 1982, J. molec. Spectrosc., 92, 184.
- [307] NÉDÉLEE, O., and DUFAYARD, J., 1982, J. chem. Phys., 76, 378.
- [308] CLYNE, M. A. A., and HEAVEN, M. C., 1980, Chem. Phys., 51, 299.
- [309] LLEWELLYN, I. P., FONTIJIN, A., and CLYNE, M. A. A., 1981, Chem. Phys. Lett., 84, 504.
- [310] HUSAIN, D., and NORRIS, P. E., 1978, J. chem. Soc. Faraday Trans., II, 74, 93; HUSAIN, D., and NORRIS, P. E., 1978, J. chem. Soc. Faraday Trans., II, 74, 106.
- [311] CROSS, P. J., and HUSAIN, D., 1978, J. Photochem., 8, 183; CROSS, P. J., and HUSAIN, D., 1979, J. Photochem., 10, 251.
- [312] HUSAIN, D., and LITTLER, J. G. F., 1974, Int. J. chem. Kinet., 6, 61; HUSAIN, D., and LITTLER, J. G. F., 1973, J. Photochem., 2, 247.
- [313] BROWN, A., and HUSAIN, D., 1975, J. chem. Soc. Faraday Trans., II, 71, 699.
- [314] LITTLE, D. J., DALGLEISH, A., and DONOVAN, R. J., 1972, J. chem. Soc. Faraday Disc., 53, 211.
- [315] CALLEAR, A. B., and TYERMAN, W. J. R., 1965, Trans., Faraday Soc., 61, 2395.
- [316] CHOWDHURY, M. A., and HUSAIN, D., 1977, J. chem. Soc. Faraday Trans., II, 73, 1805.
- [317] DONOVAN, R. J., and BRECKENRIDGE, W. H., 1971, Chem. Phys. Lett., 11, 520.
- [318] SCHWEITZER, W. G., 1963, J. opt. Soc. Am., 53, 1055.
- [319] JOHNS, J. W. C., MCKELLAR, A. R., and RIGGIN, M., 1977, J. chem. Phys., 66, 3962.
- [320] PHILLIPS, L. F., 1977, J. chem. Soc. Faraday Trans., II, 73, 97.
- [321] SCHILOWITZ, A. M., and WIESENFELD, J. R., 1982, Chem. Phys. Lett., 89, 438.
- [322] BRECKENRIDGE, W. H., DONOVAN, R. J., and MALMIN, O. K., 1979, Chem. Phys. Lett., 62, 608.
- [323] KIM, K. C., FLEMING, R., and SEITZ, D., 1979, Chem. Phys. Lett., 63, 471.
- [324] RICE, W. W., WAMPLER, F. B., OLDENBORG, R. C., LEWIS, W. B., TIEE, J. J., and PACK, R. T., 1980, J. chem. Phys., 72, 2984.
- [325] PAULY, H., and TOENNIES, J. P. (and references given there), 1965, Atomic molec. Phys., 1, 195.
- [326] ERDMANN, T., FIGGER, A., and WALTHER, H., 1972, Opt. Commun., 6, 166.
- [327] AGKPO, A., and SOCHET, L. R., 1974, Combust. Flame, 23, 47.
- [328] FONER, S. N., and HUDSON, R. L., 1981, J. chem. Phys., 74, 5017.
- [329] BARONAVSKI, A. P., MILLER, R. G., and MCDONALD, J. R., 1978, Chem. Phys., 30, 119; MCDONALD, J. R., MILLER, R. G., and BARONAVSKI, A. P., 1978, Chem. Phys., 30, 133.
- [330] ZETZSCH, C., and STUHL, F., 1975, Chem. Phys. Lett., 33, 375.

- [331] ECKBRETH, A. C., BOUCZYK, P. A., and SCHIRLEY, J. A., 1978, EPA-Report No. 600, 7-78-104.
- [332] ASHFOLD, M. N. R., QUINTON, A. M., and SIMONS, J. P., 1980, J. chem. Soc. Faraday Trans., II, **76**, 905.
- [333] DOUGLAS, A. E., 1955, Can. J. Phys., 33, 801.
- [334] DUBOIS, I., and LECLERCQ, H., 1971, Can. J. Phys., 49, 3053.
- [335] SUCHARD, S. N., and MELZER, J. E. (and references given there), 1976, Spectral Data (Homonuclear Diatomic Molecules). Volume 2 (New York: IFI/Plenum Data Comp).
- [336] SUCHARD, S. N. (and references given there), 1974, Spectral Constants for Selected Heteronuclear Diatomic Molecules, 1, Aerospace Report No. TR-0074 (4641)6.
- [337] MERER, A. J., and TRAVIS, D. N., 1966, Can. J. Phys., 44, 525.
- [338] JONKERS, G., VAN DER KERK, S. M., MOOYMAN, R., and DE LANGE, C. A., 1982, Chem. Phys. Lett., 90, 252.
- [339] FEHLNER, T. P., and TURNER, D. W., 1974, Inorg. Chem., 13, 754; WESTWOOD, N. P. C., 1974, Chem. Phys. Lett., 25, 558.
- [340] LEE, J. H., MICHAEL, J. V., PAYNE, W. A., and STIEF, L. J., 1978, J. chem. Phys., 69, 3069.
- [341] VASUDEV, R., and ZARE, R. N., 1982, J. Chem. phys., 76, 5267.
- [342] HOCHANADEL, C. J., GHORMLEY, G. A., BOYLE, J. W., and OGREN, P. J., 1977, *J. phys. Chem.*, **81**, 3.
- [343] HUNZIKER, H. E., and WENDT, H. R., 1976, J. chem. Phys., 64, 3488.
- [344] HUSAIN, D., and NORRIS, P. E., 1978, J. chem. Soc. Faraday Trans., II, 74, 1483.
- [345] BROWN, A., and HUSAIN, D., 1976, Can. J. Chem., 54, 4.
- [346] WIESENFELD, R. J., and YUEN, M. J., 1976, Chem. Phys. Lett., 42, 293.
- [347] RYAN, K. R., and PLUMB, I. C., 1982, J. phys. Chem., 86, 4678.
- [348] GLASS, G. P., ENDO, H., and CHATURVEDI, B. K., 1982, J. chem. Phys., 77, 5450; CLOUGH,
 P. N., CURRAN, A. H., and THRUSH, B. A., 1971, Proc. R. Soc. Lond. A, 323, 541.
- [349] DILL, B., and HEYDTMANN, H., 1980, Chem. Phys., 54, 9.
- [350] MARGITAN, J. J., and WATSON, R. T., 1982, J. chem. Phys., 86, 3819.
- [351] BLACKWELL, B. A., POLANYI, J. C., and SLOAN, J. J., 1977, Chem. Phys., 24, 25.
- [352] BEMAND, P. P., and CLYNE, M. A. A., 1976, J. chem. Soc. Faraday Trans., II, 72, 191.
- [353] CLYNE, M. A. A., and NIP, W. S., 1977, J. chem. Soc. Faraday Trans., II, 73, 1308.
- [354] PARKER, J. H., and PIMENTEL, G. C., 1969, J. chem. Phys., 51, 91.
- [355] POLANYI, J. C., and TARDY, D. C., 1969, J. chem. Phys., 51, 5717.
- [356] FLETCHER, I. S., and HUSAIN, D., 1977, Chem. Phys. Lett., 49, 516.
- [357] LOWE, R. S., and MCKELLAR, A. R., 1980, J. molec. Spectrosc., 79, 424.
- [358] MCKELLAR, A. R. W., 1979, Can. J. Phys., 57, 2106.
- [359] MARGOLIS, J. S., MENZIES, R. T., and HINKLEY, E. D., 1978, Appl. Optics, 17, 1680.
- [360] DAVIES, P. B., TEMPS, F., WAGNER, H. GG., and STERN, D. P., 1982, MPI für Strömungsforschung, Bericht 19.
- [361] COOMBE, R. D., and HORNE, R. K., 1979, J. phys. Chem., 83, 2805.
- [362] UEHARA, H., and HAKUTA, K., 1978, Chem. Phys. Lett., 58, 287.
- [363] PIPER, L. G., KRECH, R. H., and TAYLOR, R. L., 1980, J. chem. Phys., 73, 791.
- [364] GUEST, J. A., and LEE, L. C., 1981, J. Phys. B, 14, 3401.
- [365] BERTHOU, J. M., PASCAT, B., GUENEBANT, H., and RAMSAY, D. A., 1972, Can. J. Phys., 50, 2265.
- [366] SCALABSIN, A., SAYKALLY, R., EVENSON, K. M., RADFORD, H. E., and MIZUSHIMA, M., 1981, J. molec. Spectrosc., 89, 344.
- [367] CUPITT, L. T., and GLASS, G. P., 1975, Int. J. chem. Kinet. Symp. 1, 39.
- [368] MIHELCIC, D., and SCHINDLER, R. N., 1970, Ber. Bunsenges. phys. Chem., 74, 1280.
- [369] MILLER, T. A., COOK, T. J., ZEGARSKI, B. R., and BRECKENRIDGE, W. H., 1973, J. chem. Phys., 58, 1548.
- [370] SMOES, S., and DROWART, J., 1977, J. chem. Soc. Faraday Trans., II, 73, 1746.
- [371] DROWART, J., and SMOES, S., 1977, J. chem. Soc. Faraday Trans., II, 73, 1755.
- [372] DONOVAN, R. J., and LITTLE, D. J., 1973, J. chem. Soc. Faraday Trans., II, 69, 952.
- [373] CALLEAR, A. B., and TYERMAN, W. J. R., 1966, Trans. Faraday Soc., II, 62, 2313.
- [374] UEHARA, H., and HAKUTA, K., 1979, Proceedings of the 14th International Symposium of Free Radicals, Sanda, Japan.
- [375] RUSSELL, D. K., KROLL, M., and BEAUDET, R. A., 1977, J. chem. Phys., 66, 1979; SCHULZ,
 W., WEYER, K. G., BEAUDET, R. A., and WALTHER, H., 1980, J. chem. Phys., 72, 589.

- [376] TAYLOR, E. H., and DATZ, S., 1956, J. chem. Phys., 25, 389; DATZ, S., and TAYLOR, E. H., 1956, J. chem. Phys., 25, 395.
- [377] MINTURM, R. E., DATZ, S., and BECKER, R. L., 1966, J. chem. Phys., 44, 1149.
- [378] TOUW, T. R., and TRISCHKA, J. W., 1963, J. appl. Phys., 34, 3635.
- [379] CAIRNS, R. B., and SAMSON, J. A. R., 1965, Phys. Rev. A, 139, 1403.
- [380] FEHSENFELD, F. C., EVENSON, K. M., and BROIDA, H. P., 1965, Rev. sci. Instr., 36, 294.
- [381] CLARK, I. D., and WAYNE, R. P., 1970, Molec. Phys., 18, 523.
- [382] TOLLEFSON, E. L., and LEROY, D. J., 1948, J. chem. Phys., 16, 1057.
- [383] ARNOLD, J. S., BROWN, R. J., and OGRYZLO, E. A., 1965, Photochem. Photobiol., 4, 963.
- [384] CUPITT, L. T., TAKACS, G. A., and GLASS, G. P., 1982, Int. J. chem. Kinet., 14, 487.
- [385] BOODAGHIANS, R., BORRELL, P. M., BORRELL, P., and GRANT, K. R., 1982, J. chem. Soc. Faraday Trans., II, 78, 1195.
- [386] HUIE, R. E., and HERRON, J. T., 1973, Int. J. chem. Kinet., 5, 197.
- [387] KONIG, R., and LADEMANN, J., 1983, Chem. Phys. Lett., 94, 152.
- [388] LAU, K. H., BRITTAIN, R. D., and HILDENBRAND, D. L., 1982, J. chem. Phys., 86, 4429.
- [389] GOODFRIED, P. L., and WOODS, H. P., 1966, J. molec. Spectrosc., 20, 258.
- [390] WOODMAN, C. M., 1970, J. molec. Spectrosc., 33, 311.
- [391] LINDSAY, D. M., GOLE, J. L., and LOMBARDI, J. R., 1979, Chem. Phys., 37, 333.
- [392] HERZBERG, G., and SHOOSMITH, J., 1956, Can. J. Phys., 34, 523.
- [393] GRAHAM, R. A., and JOHNSTON, H. S., 1978, J. phys. Chem., 82, 254.
- [394] NELSON, H. H., MARINELLI, W. J., and JOHNSTON, H. S., 1981, Chem. Phys. Lett., 78, 495.
- [395] DREIER, TH., and WOLFRUM, J., personal communication.
- [396] BÖHLAND, TH., TEMPS, F., and WAGNER, H. GG., 1984, Ber. Bunsenges. phys. Chem., 88, 455.